Skip to main content
Log in

Relationship between layered crystal structure and mechanical properties of M3AlN (M = Zr and Hf): A first-principles investigation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bonding character, elastic mechanical parameters, ideal strengths, and atomistic shear deformation mechanisms of M3AlN (M = Zr and Hf) were studied by first-principles method. M3AlN exhibits layered chemical bonding character due to the alternately stacking of relatively soft Al–M and strong N–M covalent bonds. The second-order elastic constants and mechanical parameters of M3AlN were reported for the first time. The stress–strain relationships for different deformation modes were studied and the ideal shear and tensile strength were obtained. M3AlN ceramics are predicted to be “quasi-ductile” layered nitrides based on the low shear-modulus-to-bulk-modulus ratios, positive Cauchy pressure (c12c44), and lower ideal shear strength compared to ideal tensile strength. Investigation of the atomistic shear deformation mechanism of Hf3AlN shows that stretching of soft Al–Hf bonds and relatively weak bridge N–Hf1 bonds dominate the shear deformation; while the rigid N–Hf2 bonds resist against the applied shear strain. Chemical bonding characteristics and shear deformation mechanism of M3AlN are similar with those of other “quasi-ductile” ceramics, such as MAX phases, LaPO4 monazite, and γ-Y2Si2O7. The results further suggest that M3AlN nitrides should be quasi-ductile and damage tolerant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Nowotny and S. Windisch: High temperature compounds. Annu. Rev. Mater. Sci. 3, 171 (1973).

    Article  CAS  Google Scholar 

  2. M.W. Barsoum: The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 (2000).

    Article  CAS  Google Scholar 

  3. J.Y. Wang, Y.C. Zhou, Z.J. Lin, and T. Liao: First-principles investigation on chemical bonding and bulk modulus of ternary carbide Zr2Al3C5. Phys. Rev. B 72, 052102 (2005).

    Article  CAS  Google Scholar 

  4. Z.J. Lin, M.J. Zhuo, L.F. He, Y.C. Zhou, M.S. Li, and J.Y. Wang: Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5 ceramics. Acta Mater. 54, 3843 (2006).

    Article  CAS  Google Scholar 

  5. L.F. He, Y.C. Zhou, Y.W. Bao, and J.Y. Wang: Synthesis and oxidation of Zr3Al3C5 powders. Int. J. Mater. Res. 98, 3 (2007).

    Article  CAS  Google Scholar 

  6. L.F. He, Y.C. Zhou, Y.W. Bao, Z.J. Lin, and J.Y. Wang: Synthesis, physical, and mechanical properties of bulk Zr3Al3C5 ceramic. J. Am. Ceram. Soc. 90, 1164 (2007).

    Article  CAS  Google Scholar 

  7. L.F. He, J.Y. Wang, Y.W. Bao, and Y.C. Zhou: Elastic and thermal properties of Zr2Al3C4: Experimental investigations and ab initio calculations. J. Appl. Phys. 102, 043531 (2007).

    Article  CAS  Google Scholar 

  8. L.F. He, Z.J. Lin, J.Y. Wang, Y.W. Bao, M.S. Li, and Y.C. Zhou: Synthesis and characterization of bulk Zr2Al3C4 ceramic. J. Am. Ceram. Soc. 90, 3687 (2007).

    Article  CAS  Google Scholar 

  9. Z.J. Lin, L.F. He, M.S. Li, J.Y. Wang, and Y.C. Zhou: Layered stacking characteristics of ternary zirconium aluminum carbides. J. Mater. Res. 22, 3058 (2007).

    Article  CAS  Google Scholar 

  10. L.F. He, Z.J. Lin, J.Y. Wang, Y.W. Bao, and Y.C. Zhou: Crystal structure and theoretical elastic property of two new ternary ceramics Hf3Al4C6 and Hf2Al4C5. Scr. Mater. 58, 679 (2008).

    Article  CAS  Google Scholar 

  11. J.Y. Wang, Y.C. Zhou, Z.J. Lin, T. Liao, and L.F. He: First-principles prediction of the mechanical properties and electronic structure of ternary aluminum carbide Zr3Al3C5. Phys. Rev. B 73, 134107 (2006).

    Article  CAS  Google Scholar 

  12. J.Y. Wang, Y.C. Zhou, Z.J. Lin, and T. Liao: Pressure-induced polymorphism in Al3BC3: A first-principles study. J. Solid State Chem. 179, 2703 (2006).

    Google Scholar 

  13. F.Z. Li, Y.C. Zhou, L.F. He, B. Liu, and J.Y. Wang: Synthesis, microstructure, and mechanical properties of Al3BC3. J. Am. Ceram. Soc. 91, 2343 (2008).

    Article  CAS  Google Scholar 

  14. J.Y. Wang, Y.C. Zhou, T. Liao, and Z.J. Lin: First-principles prediction of low shear-strain resistance of Al3BC3: A metal borocarbide containing short linear BC2 units. Appl. Phys. Lett. 89, 021917 (2006).

    Article  CAS  Google Scholar 

  15. T. Liao, J.Y. Wang, and Y.C. Zhou: Atomistic deformation modes and intrinsic brittleness of Al4SiC4: A first-principles investigation. Phys. Rev. B 74, 174112 (2006).

    Article  CAS  Google Scholar 

  16. Y.C. Zhou and Z.M. Sun: Electronic structure and bonding properties of layered machinable Ti2AlC and Ti2AlN ceramics. Phys. Rev. B 61, 12570 (2000).

    Article  CAS  Google Scholar 

  17. Y.C. Zhou, X.H. Wang, Z.M. Sun, and S.Q. Chen: Electronic and structural properties of the layered ternary carbide Ti3AlC2. J. Mater. Chem. 11, 2335 (2001).

    Article  CAS  Google Scholar 

  18. T. Liao, J.Y. Wang, and Y.C. Zhou: Basal-plane slip systems and polymorphic phase transformation in Ti2AlC and Ti2AlN: A first-principles study. J. Phys. Condens. Matter 18, 6183 (2006).

    Article  CAS  Google Scholar 

  19. T. Liao, J.Y. Wang, and Y.C. Zhou: Deformation modes and ideal strengths of ternary layered Ti2AlC and Ti2AlN from first-principles calculations. Phys. Rev. B 73, 214109 (2006).

    Article  CAS  Google Scholar 

  20. T. Liao, J.Y. Wang, and Y.C. Zhou: Superior mechanical properties of Nb2AsC to those of other layered ternary carbides: A first-principles study. J. Phys. Condens. Matter 18, L527 (2006).

    Article  CAS  Google Scholar 

  21. D. Music, Z.M. Sun, A.A. Voevodin, and J.M. Schneider: Electronic structure and shearing in nanolaminated ternary carbides. Solid State Commun. 139, 139 (2006).

    Article  CAS  Google Scholar 

  22. D. Music, A. Houben, R. Dronskowski, and J.M. Schneider: Ab initio study of ductility in M2AlC (M = Ti, V, Cr). Phys. Rev. B 75, 174102 (2007).

    Article  CAS  Google Scholar 

  23. J.M. Wang, J.Y. Wang, Y.C. Zhou, and C.F. Hu: Phase stability, electronic structure and mechanical properties of ternary-layered carbide Nb4AlC3: An ab initio study. Acta Mater. 56, 1511 (2008).

    Article  CAS  Google Scholar 

  24. J.S. Schuster, J. Bauer, and J. Debuigne: Investigation of phase equilibria relation to fusion reaction materials: I. The ternary system Zr–Al–N. J. Nucl. Mater. 116, 131 (1983).

    Article  CAS  Google Scholar 

  25. J.S. Schuster and J. Bauer: Investigation of phase equilibria relation to fusion reaction materials: I. The ternary system Hf–Al–N. J. Nucl. Mater. 120, 133 (1984).

    Article  CAS  Google Scholar 

  26. J.S. Schuster: The crystal structure of Zr3AlN. Z. Kristallogr. 175, 211 (1986).

    CAS  Google Scholar 

  27. F.Z. Li, C.F. Hu, J.M. Wang, B. Liu, J.Y. Wang, and Y.C. Zhou: Crystal structure and electronic structure of a novel Hf3AlN ceramic. J. Am. Ceram. Soc. 92, 476 (2009).

    Article  CAS  Google Scholar 

  28. J.Y. Wang, Y.C. Zhou, and Z.J. Lin: First-principles elastic stiffness of LaPO4 monazite. Appl. Phys. Lett. 87, 051902 (2005).

    Article  CAS  Google Scholar 

  29. J.Y. Wang, Y.C. Zhou, and Z.J. Lin: Mechanical properties and atomistic deformation mechanism of γ-Y2Si2O7 from first-principles investigations. Acta Mater. 55, 6019 (2007).

    Article  CAS  Google Scholar 

  30. M.D. Segall, P.L.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002).

    Article  CAS  Google Scholar 

  31. D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    Article  CAS  Google Scholar 

  32. D.M. Ceperley and B.J. Alder: Ground states of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  33. J.P. Perdew and A. Zunger: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  34. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais: Atoms, molecules, solids, and surfaces: Application of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992).

    Article  CAS  Google Scholar 

  35. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations—A reply. Phys. Rev. B 16, 1748 (1977).

    Article  Google Scholar 

  36. T.H. Fischer and J. Almlof: General methods for geometry and wavefunction optimization. J. Phys. Chem. 96, 9768 (1992).

    Article  CAS  Google Scholar 

  37. V. Milman and M.C. Warren: Elasticity of hexagonal BeO. J. Phys. Condens. Matter 13, 241 (2001).

    Article  CAS  Google Scholar 

  38. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson: Density-functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84, 4891 (1998).

    Article  CAS  Google Scholar 

  39. O.H. Nielsen and R.M. Martin: First-principles calculation of stress. Phys. Rev. Lett. 50, 697 (1983).

    Article  CAS  Google Scholar 

  40. L.E. Toth: Transition Metal Carbides and Nitrides (Academic Press, New York, 1971), p. 153.

    Google Scholar 

  41. Z. Wu, X.J. Chen, V.V. Struzhkin, and R.E. Cohen: Trends in elasticity and electronic structure of transition nitrides and carbides from first-principles. Phys. Rev. B 71, 214103 (2005).

    Article  CAS  Google Scholar 

  42. X.J. Chen, V.V. Struzhkin, Z. Wu, M. Somayazulu, J. Qian, S. Kung, A.N. Christens, Y. Zhao, R.E. Cohen, H.K. Mao, and R.J. Hemley: Hard superconducting nitrides. Proc. Nat. Acad. Sci. USA. 102, 3198 (2005).

    Article  CAS  Google Scholar 

  43. L. Vitos, P.A. Korzhavyi, and B. Johansson: Stainless steel optimization from quantum mechanical calculations. Nat. Mater. 2, 25 (2003).

    Article  CAS  Google Scholar 

  44. D. Music, Z.M. Sun, and J.M. Schneider: Structure and bonding of M2SbP (M = Ti, Zr, Hf). Phys. Rev. B 71, 092102 (2005).

    Article  CAS  Google Scholar 

  45. D. Music and J.M. Schneider: Elastic properties of MFe3N (M = Ni, Pd, Pt) studied by ab initio calculations. Appl. Phys. Lett. 88, 031914 (2006).

    Article  CAS  Google Scholar 

  46. D.G. Pettifor: Theoretical predication of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345 (1992).

    Article  CAS  Google Scholar 

  47. B.R. Lawn, N.P. Padture, H. Cait, and F. Guiberteau: Making ceramics “ductile.” Science 263, 1114 (1994).

    Article  CAS  Google Scholar 

  48. A. Kelly: Strong Solids (Oxford University Press, London, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Wang, J., Li, F. et al. Relationship between layered crystal structure and mechanical properties of M3AlN (M = Zr and Hf): A first-principles investigation. Journal of Materials Research 24, 3523–3532 (2009). https://doi.org/10.1557/jmr.2009.0437

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0437

Navigation