Skip to main content
Log in

Critical shell thickness and emission enhancement of NaYF4:Yb,Er/NaYF4/silica core/shell/shell nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Amorphous silica shells, used for functionalization of inorganic nanoparticles in bioapplications, were coated on chemically synthesized NaYF4:Yb,Er upconversion fluorescent nanoparticles via a reverse microemulsion method by using dual surfactants of polyoxyethylene (5) nonylphenylether and 1-hexanol, and tetraethyl orthosilicate as precursor. NaYF4:Yb,Er nanoparticles were equiaxed with a particle size of 11.1 ± 1.3 nm. The thickness of silica shell was ~8 nm. NaYF4:Yb,Er/silica core/shell nanoparticles were well dispersed in solvents such as ethanol and deionized water. The emission intensities of NaYF4:Yb,Er/silica core/shell nanoparticles remained the same as that of uncoated nanoparticles after surface functionalization with an amine group using (3-aminopropyl)-trimethoxysilan. Silica, although providing a good barrier to the nonradiative relaxation between the upconversion nanoparticles and the environments, did not enhance the emission intensity of upconversion nanoparticles. To increase the emission intensity of NaYF4:Yb,Er/silica core/shell nanoparticles, an undoped NaYF4 shell (~3-nm thick) was deposited on the upconversion nanoparticles before the silica coating. The total emission intensity of NaYF4:Yb,Er/NaYF4/silica core/shell/shell nanoparticles increased by 15 times compared to that without the intermediate NaYF4 shell. The critical shell thickness of NaYF4 was ~3 nm, beyond which no further emission intensity enhancement was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.X. Yu, F.Y. Li, Z.G. Chen, H. Hu, C. Zhan, H. Yang, and C.H. Huang: Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal. Chem. 81, 930 (2009).

    Article  CAS  Google Scholar 

  2. R. Kumar, M. Nyk, T.Y. Ohulchanskyy, C.A. Flask, and P.N. Prasad: Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Fund. Mater. 19, 853 (2009).

    Article  CAS  Google Scholar 

  3. S. Jiang, Y. Zhang, K.M. Lim, E.K.W. Sim, and L. Ye: NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology 20, 155101 (2009).

    Article  Google Scholar 

  4. J.A. Feijo and N. Moreno: Imaging plant cells by two-photon excitation. Protoplasma 223, 1 (2004).

    Article  Google Scholar 

  5. H. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R.S. Niedbala, and H.J. Tanke: Detection of cell and tissue surface antigens using up-converting phosphors: A new reporter technology. Anal. Biochem. 267, 30 (1999).

    Article  CAS  Google Scholar 

  6. S.R. Sershen, S.L. Westcott, N.J. Halas, and J.L. West: Temperaturesensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293 (2000).

    Article  CAS  Google Scholar 

  7. W.C.W. Chan and S.M. Nie: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016 (1998).

    Article  CAS  Google Scholar 

  8. S. Kim and M.G. Bawendi: Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc. 125, 14652 (2003).

    Article  CAS  Google Scholar 

  9. B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, and A. Libchaber: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759 (2002).

    Article  CAS  Google Scholar 

  10. D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zanchet, S. Weiss, and A.P. Alivisatos: Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105, 8861 (2001).

    Article  CAS  Google Scholar 

  11. N. Menyuk, K. Dwight, and J.W. Pierce: NaYF4:Yb,Er—An efficient upconversion phosphor. Appl. Phys. Lett. 21, 159 (1972).

    Article  CAS  Google Scholar 

  12. F. Wang and X. Liu: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976 (2009).

    Article  CAS  Google Scholar 

  13. G.S. Yi and G.M. Chow: Synthesis of hexagonal-phase NaYF4: Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 16, 2324 (2006).

    Article  CAS  Google Scholar 

  14. J.N. Shan, J.B. Chen, J. Meng, J. Collins, W. Soboyejo, J.S. Friedberg, and Y.G. Ju: Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors. J. Appl. Phys. 104, 094308 (2008).

    Article  Google Scholar 

  15. Z.Q. Li, Y. Zhang, and S. Jiang: Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765 (2008).

    Article  CAS  Google Scholar 

  16. X. Peng, M.C. Schlamp, A.V. Kadavanich, and A.P. Alivisatos: Epitaxial growth of highly luminescent CdSe/CdS Core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019 (1997).

    Article  CAS  Google Scholar 

  17. L. Spanhel, M. Haase, H. Weller, and A. Henglein: Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 109, 5649 (1987).

    Article  CAS  Google Scholar 

  18. M.A. Hines and P. Guyot-Sionnest: Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J. Phys. Chem. 100, 468 (1996).

    Article  CAS  Google Scholar 

  19. Z.G. Chen, H.L. Chen, H. Hu, M.X. Yu, F.Y. Li, Q. Zhang, Z.G. Zhou, T. Yi, and C.H. Huang: Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 130, 3023 (2008).

    Article  CAS  Google Scholar 

  20. G.S. Yi and G.M. Chow: Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19, 341 (2007).

    Article  CAS  Google Scholar 

  21. N.O. Nunez, H. Miguez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocana: Synthesis of spherical down- and up-conversion NaYF4-based nanophosphors with tunable size in ethylene glycol without surfactants or capping additives. Eur. J. Inorg. Chem.4517 (2008).

    Google Scholar 

  22. P. Ghosh and A. Patra: Tuning of crystal phase and luminescence properties of Eu3+ doped sodium yttrium fluoride nanocrystals. J. Phys. Chem. C 112, 3223 (2008).

    CAS  Google Scholar 

  23. Y. Wang, L.P. Tu, J.W. Zhao, Y.J. Sun, X.G. Kong, and H. Zhang: Upconversion luminescence of beta-NaYF4:Yb3+,Er3+@beta-NaYF4 core/shell nanoparticles: Excitation power, density and surface dependence. J. Phys. Chem. C 113, 7164 (2009).

    CAS  Google Scholar 

  24. C.H. Dong and van F. Veggel: Cation exchange in lanthanide fluoride nanoparticles. ACS Nano. 3, 123 (2009).

    Article  CAS  Google Scholar 

  25. S.T. Selvan, T.T. Tan, and J.Y. Ying: Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv. Mater. 17, 1620 (2005).

    Article  CAS  Google Scholar 

  26. M. Darbandi, R. Thomann, and T. Nann: Single quantum dots in silica spheres by microemulsion synthesis. Chem. Mater. 17, 5720 (2005).

    Article  CAS  Google Scholar 

  27. T. Uchino, A. Aboshi, S. Kohara, Y. Ohishi, M. Sakashita, and K. Aoki: Microscopic structure of nanometer-sized silica particles. Phys. Rev. B 69, 155409 (2004).

    Article  Google Scholar 

  28. Q. Lue, F. Guo, L. Sun, A. Li, and L. Zhao: Surface modification of ZrO2:Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence. J. Phys. Chem. C 112, 2836 (2008).

    Article  Google Scholar 

  29. W. Stöer, A. Fink, and E. Bohn: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).

    Article  Google Scholar 

  30. F.J. Arriagada and K. Osseoasare: Phase and dispersion stability effects in the synthesis of silica nanoparticles in a nonionic reverse microemulsion. Colloids Surf. 69, 105 (1992).

    Article  CAS  Google Scholar 

  31. O. Ehlert, R. Thomann, M. Darbandi, and T. Nann: A four-color colloidal multiplexing nanoparticle system. ACS Nano. 2, 120 (2008).

    Article  CAS  Google Scholar 

  32. H. Hu, L.Q. Xiong, J. Zhou, F.Y. Li, T.Y. Cao, and C.H. Huang: Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells. Chem. Eur. J. 15, 3577 (2009).

    Article  CAS  Google Scholar 

  33. Q. Lu, F.Y. Guo, L. Sun, A.H. Li, and L.C. Zhao: Silica-/titaniacoated Y2O3:Tm3+,Yb3+ nanoparticles with improvement in upconversion luminescence induced by different thickness shells. J. Appl. Phys. 103, 123533 (2008).

    Article  Google Scholar 

  34. Z.Y. Liu, G.S. Yi, H.T. Zhang, J. Ding, Y.W. Zhang, and J.M. Xue: Monodisperse silica nanoparticles encapsulating upconversion fluorescent and superparamagnetic nanocrystals. Chem. Commun. (Camb.). 694 (2008).

    Google Scholar 

  35. R. Koole, van M.M. Schooneveld, J. Hilhorst, C.D. Donega, D.C.’t. Hart, van A. Blaaderen, D. Vanmaekelbergh, and A. Meijerink: On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem. Mater. 20, 2503 (2008).

    Article  CAS  Google Scholar 

  36. J.F. Suyver, J. Grimm, van M.K. Veen, D. Biner, K.W. Kramer, and H.U. Gudel: Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J. Lumin. 117, 1 (2006).

    Article  CAS  Google Scholar 

  37. G.P. Dong, X.F. Liu, X.D. Xiao, B. Qian, J. Ruan, H.C. Yang, S. Ye, D.P. Chen, and J.R. Qiu: Upconversion luminescence of Er3+-Yb3+ codoped NaYF4-PVP electrospun nanofibers. IEEE Photonics Technol. Lett. 21, 57 (2009).

    Article  CAS  Google Scholar 

  38. R.C. Powell: Physics of Solid-State Laser Materials (Springer, New York, 1998).

    Book  Google Scholar 

  39. D. Yuan, G.S. Yi, and G.M. Chow: Effects of size and surface on luminescence properties of submicron upconversion NaYF4:Yb, Er particles. J. Mater. Res. 24, 2042 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gan Chow Moog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, L.P., Yuan, D., Yi, G.S. et al. Critical shell thickness and emission enhancement of NaYF4:Yb,Er/NaYF4/silica core/shell/shell nanoparticles. Journal of Materials Research 24, 3559–3568 (2009). https://doi.org/10.1557/jmr.2009.0432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0432

Navigation