Skip to main content
Log in

Effects of solvents and Sb sources on the morphologies of LaFe3CoSb12 nanopowders made by the hydro/solvo thermal method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thermoelectric LaFe3CoSb12 nanopowders were synthesized by the hydro/solvo thermal method. The effects of different solvents were investigated by using only the potassium antimony tartrate as Sb source. Also, the effects of the different Sb sources were investigated by using only water as solvent on the morphologies of the resulting nanopowders. The results show that a mixture of nanoparticles and nanorods can be obtained in aqueous solution of cetyltrimethylammonium bromide or ethylenediamine-tetra-acetic disodium salt. In ethylenediamine only nanorods can be obtained, and in ethylene glycol only nanoparticles can be obtained. The other morphologies of the LaFe3CoSb12, such as particle-like, nest-shaped, branch-shaped, or feather-like crystalline, can be synthesized in water by selecting a suitable Sb source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Terry and A. Subramanianm: Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bull. 31, 188 (2006).

    Google Scholar 

  2. R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O’Quinn: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  3. T.C. Harman, P.J. Taylor, M.P. Walsh and B.E. LaForge: Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229 (2002).

    CAS  Google Scholar 

  4. G.J. Snyder and E.S. Toberer: Complex thermoelectric materials. Nature 17, 105 (2008).

    Google Scholar 

  5. J. Li, Y.C. Zhu, J. Du, J.H. Zhang and Y.T. Qian: Synthesis and shape evolution of bismuth selenide hollow nanospheres. Solid State Commun. 147, 36 (2008).

    CAS  Google Scholar 

  6. J.L. Mi, X.B. Zhao, T.J. Zhu, J.P. Tu and G.S. Cao: Solvothermal synthesis of nanostructured ternary skutterudite Fe0.5Ni0.5Sb3. J. Alloys Compd. 399, 260 (2005).

    CAS  Google Scholar 

  7. Y.H. Zhang, T.J. Zhu, J.P. Tu and X.B. Zhao: Flower-like nano-structure and thermoelectric properties of hydrothermally synthesized La-containing Bi2Te3 based alloys. Mater. Chem. Phys. 103, 484 (2007).

    CAS  Google Scholar 

  8. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu and X.B. Zhang: Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005).

    Google Scholar 

  9. K. Sudip, C. Batabyal, A.R. Basu and G.S. Das Sanyal: Solvo-thermal synthesis of bismuth selenide nanotubes. Mater. Lett. 60, 2582 (2006).

    Google Scholar 

  10. R. Malakooti, L. Cademartiri, A. Migliori and G.A. Ozin: Ultrathin Sb2S3 nanowires and nanoplatelets. J. Mater. Chem. 18, 66 (2008).

    Article  CAS  Google Scholar 

  11. T.M. Tritt: Thermoelectric materials: Holey, unholy semiconductors. Science 283, 804 (1999).

    Article  CAS  Google Scholar 

  12. V. Keppens, D. Mandrus, B.C. Sales, B.C. Chakoumakos, P. Dai, R. Coldea, M.B. Maple, D.A. Gajewski, E.J. Freeman and S. Bennington: Localized vibrational modes in metallic solids. Nature 395, 876 (1998).

    Article  CAS  Google Scholar 

  13. B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens and J.R. Thompson: Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B: Condens. Matter 56, 15081 (1997).

    Article  CAS  Google Scholar 

  14. L. Kuznetsov, L.A. Kuznetsova and D.M. Rowe: Effect of partial void filling on the transport properties of NdxCo4Sb12 skutterudites. J. Phys. Condens. Matter 15, 5035 (2003).

    Article  CAS  Google Scholar 

  15. J. Yang, D.T. Morelli, G.P. Meisner, W. Chen, J.S. Dyck and C. Uher: Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites. Phys. Rev. B: Condens. Matter 67, 165207 (2003).

    Article  Google Scholar 

  16. G.A. Lamberton Jr., S. Bhattacharya, R.T. Littleton IV, M.A. Kaeser, R.H. Tedstrom, T.M. Tritt, J. Yang and G.S. Nolas: High figure of merit in Eu-filled CoSb3-based skutterudites. Appl. Phys. Lett. 80, 598 (2002).

    Article  CAS  Google Scholar 

  17. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen and W. Zhang: Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12double-filled skutterudites. Appl. Phys. Lett. 92, 182101 (2008).

    Article  Google Scholar 

  18. P.C. Zhai, W.Y. Zhao, Y. Li, L.S. Liu, X.F. Tang, Q.J. Zhang and M. Niino: Nanostructures and enhanced thermoelectric properties in Ce-filled skutterudite bulk materials. Appl. Phys. Lett. 89, 052111 (2006).

    Article  Google Scholar 

  19. H. Li, X.F. Tang, X.L. Su and Q.J. Zhang: Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl. Phys. Lett. 92, 202114 (2008).

    Article  Google Scholar 

  20. P.N. Alboni, X. Ji, J. He, N. Gothard and T.M. Tritt: Thermo-electric properties of La0.9CoFe3Sb12–CoSb3 skutterudite nanocomposites. J. Appl. Phys. 103, 113707 (2008).

    Google Scholar 

  21. A. Suzuki: Characterization of filled skutterudite LaFeCo3Sb12thin films prepared by laser ablation. Proceedings of ICT 2001 (2001), p. 318–321.

  22. A.P. Grosvenor, R.G. Cavell and A. Mar: X-ray photoelectron spectroscopy study of the skutterudites LaFe4Sb12, CeFe4Sb12, CoSb3, and CoP3. Phys. Rev. B: Condens. Matter 74, 125102 (2006).

    Google Scholar 

  23. L. Bertini, C. Stiewe, M. Toprak, S. Williams, D. Platzek, A. Mrotzek, Y. Zhang, C. Gatti, E. Mueller, M. Muhammed and M. Rowe: Nanostructured Co1-xNixSb3 skutterudites: Synthesis, thermoelectric properties and theoretical modeling. J. Appl. Phys. 93, 438 (2003).

    CAS  Google Scholar 

  24. W. Plieth: Electrochemistry for Materials Science (Elsevier, London, 2008), p. 72.

    Google Scholar 

  25. J.L. Mi, X.B. Zhao, T.J. Zhu and J.P. Tu: Nanosized La filled CoSb3 prepared by a solvothermal-annealing method. Mater. Lett. 62, 2363 (2008).

    CAS  Google Scholar 

  26. B.C. Chakoumakos, B.C. Sales, D. Mandrus and V. Keppens: Disparate atomic displacements in skutterudite-type LaFe3CoSb12, a model for thermoelectric behavior. Acta Crystallogr, Sect. B: Struct. Sci. 55, 341 (1999).

    CAS  Google Scholar 

  27. Y. Deng, X.S. Zhou, G.D. Wei, J. Liu, C.W. Nan and S.J. Zhao: Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology. J. Phys. Chem. Solids 63, 2119 (2002).

    CAS  Google Scholar 

  28. J. Zhang, Z.H. Dai, J.C. Bao, N. Zhang and M. Arturo LópezQuintel: Self-assembly of Co-based nanosheets into novel nest-shaped nanostructures: Synthesis and characterization. J. Colloid Interface Sci. 305, 3392 (2007).

    Google Scholar 

  29. D.E. Zhang, X.M. Ni, X.J. Zhang and H.G. Zheng: Synthesis and characterization of Ni–Co needle-like alloys in water-in-oil microemulsion. J. Magn. Magn. Mater. 302, 2902 (2006).

    Google Scholar 

  30. E.E. Carpenter, J.A. Sims, J.A. Wienmann, W.L. Zhou and C.J. O’Connor: Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques. J. Appl. Phys. 87, 56152 (2000).

    Article  Google Scholar 

  31. H.L. Ni, T.J. Zhu and X.B. Zhao: Hydrothermally synthesized and hot-pressed Bi2(Te,Se)3 thermoelectric alloys. Physica B (Amsterdam) 364, 50 (2005).

    Article  CAS  Google Scholar 

  32. S.L. Xiong, B.J. Xi, C.M. Wang, G.F. Zou, L.F. Fei, W.Z. Wang and Y.T. Qian: Shape-controlled synthesis of 3D and 1D structures of CdS in a binary solution with L-cysteine’s assistance. Chem. Eur. J. 13, 3076 (2007).

    Article  CAS  Google Scholar 

  33. H.M. Hu, M.S. Mo, B.J. Yang, M.W. Shao, S.Y. Zhang, Q.W. Li and Y.T. Qian: A rational complexing-reduction route to antimony nanotubes. New J. Chem. 27, 1161 (2003).

    Article  CAS  Google Scholar 

  34. H.L. Ni, X.B. Zhao, T.J. Zhu, X.H. Ji and J.P. Tu: Synthesis and thermoelectric properties of Bi2Te3 based nanocomposites. J. Alloys Compd. 397, 317 (2005).

    Article  CAS  Google Scholar 

  35. B.Y. Yoo, C.K. Huang, J.R. Lim, J. Herman, M.A. Ryan, J.P. Fleurial and N.V. Myung: Electrochemically deposited thermoelectric n-type Bi2Te3 thin films. Electrochim. Acta 50, 4371 (2005).

    Article  CAS  Google Scholar 

  36. H. Liu, J.Y. Wang, X.B. Hu, L.X. Li, F. Gu, S.R. Zhao, M.Y. Gu, R.I. Boughton and M.H. Jiang: Preparation of filled skutterudite nanowire by a hydrothermal method. J. Alloys Compd. 334, 313 (2002).

    Article  CAS  Google Scholar 

  37. Y.Q. Cao, T.J. Zhu and X.B. Zhao: Thermoelectric Bi2Te3 nano-tubes synthesized by low-temperature aqueous chemical method. J. Alloys Compd. 449, 109 (2008).

    Article  CAS  Google Scholar 

  38. G.Q. Zhu, P. Liu, H.Y. Miao, J.P. Zhu, X.B. Bian, Y. Liu, B. Chen and X.B. Wang: Large-scale synthesis of ultralong Sb2S3 sub-microwires via a hydrothermal process. Mater. Res. Bull. 43, 2636 (2008).

    Article  CAS  Google Scholar 

  39. L.H. Dong, Y. Chu and W. Zhang: A very simple and low cost route to Bi2S3 nanorods bundles and dandelion-like nanostructures. Mater. Lett. 62, 4269 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, P., Shen, Z. & Hu, X. Effects of solvents and Sb sources on the morphologies of LaFe3CoSb12 nanopowders made by the hydro/solvo thermal method. Journal of Materials Research 24, 2873–2879 (2009). https://doi.org/10.1557/jmr.2009.0363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0363

Navigation