Skip to main content
Log in

Effective indenter radius and frame compliance in instrumented indentation testing using a spherical indenter

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We introduce a novel method to correct for imperfect indenter geometry and frame compliance in instrumented indentation testing with a spherical indenter. Effective radii were measured directly from residual indentation marks at various contact depths (ratio of contact depth to indenter radius between 0.1 and 0.9) and were determined as a function of contact depth. Frame compliance was found to depend on contact depth especially at small indentation depths, which is successfully explained using the concept of an extended frame boundary. Improved representative stress-strain values as well as hardness and elastic modulus were obtained over the entire contact depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.I. Bulychev, V.P. Alekhin, M.K. Shorshorov, A.P. Ternovskii and G.D. Shnyrev: Determining Young’s modulus from the indentor penetration diagram. Zavod. Lab. 41, 1137 (1975).

    CAS  Google Scholar 

  2. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  3. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  4. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor and Y.L. Shen: Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55, 4015 (2007).

    Article  CAS  Google Scholar 

  5. A.C. Fischer-Cripps: A review of analysis methods for sub-micron indentation testing. Vacuum 58, 569 (2000).

    Article  CAS  Google Scholar 

  6. N.K. Mukhopadhyay and P. Paufler: Micro- and nanoindentation techniques for mechanical characterisation of materials. Int. Mater. Rev. 51, 209 (2006).

    Article  CAS  Google Scholar 

  7. J.S. Field and M.V. Swain: Determining the mechanical-properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 (1995).

    Article  CAS  Google Scholar 

  8. C.A. Schuh: Nanoindentation studies of materials. Mater. Today 9, 32 (2006).

    Article  CAS  Google Scholar 

  9. D. Tabor: Hardness of Metals (Clarendon Press, Oxford, 1951).

    Google Scholar 

  10. A. Bolshakov and G.M. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth-sensing indentation techniques. J. Mater. Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  11. A.C. Fischer-Cripps: Nanoindentation (Springer, New York, 2002).

    Book  Google Scholar 

  12. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  13. Y.T. Cheng and C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 (2004).

    Article  Google Scholar 

  14. J.Y. Kim, B.W. Lee, D.T. Read and D. Kwon: Influence of tip bluntness on the size-dependent nanoindentation hardness. Scr. Mater. 52, 353 (2005).

    Article  CAS  Google Scholar 

  15. J.Y. Kim, S.K. Kang, J.R. Greer and D. Kwon: Evaluating plastic flow properties by characterizing indentation size effect using a sharp indenter. Acta Mater. 56, 3338 (2008).

    Article  CAS  Google Scholar 

  16. J.Y. Kim, S.K. Kang, J.J. Lee, J.I. Jang, Y.H. Lee and D. Kwon: Influence of surface-roughness on indentation size effect. Acta Mater. 55, 3555 (2007).

    Article  CAS  Google Scholar 

  17. J.H. Ahn and D. Kwon: Derivation of plastic stress-strain relationship from ball indentations: Examination of strain definition and pileup effect. J. Mater. Res. 16, 3170 (2001).

    Article  CAS  Google Scholar 

  18. S.H. Kim, B.W. Lee, Y. Choi and D. Kwon: Quantitative determination of contact depth during spherical indentation of metallic materials: A FEM study. Mater. Sci. Eng., A 415, 59 (2006).

    Article  CAS  Google Scholar 

  19. J.Y. Kim, K.W. Lee, J.S. Lee and D. Kwon: Determination of tensile properties by instrumented indentation technique: Representative stress and strain approach. Surf. Coat. Technol. 201, 4278 (2006).

    Article  CAS  Google Scholar 

  20. E.C. Jeon, J.Y. Kim, M.K. Baik, S.H. Kim, J.S. Park and D. Kwon: Optimum definition of true strain beneath a spherical indenter for deriving indentation flow curves. Mater. Sci. Eng., A 419, 196 (2006).

    Article  CAS  Google Scholar 

  21. B. Taljat, T. Zacharia and F. Kosel: New analytical procedure to determine stress-strain curve from spherical indentation data. Int. J. Solids Struct. 35, 4411 (1998).

    Article  Google Scholar 

  22. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  23. N. Chollacoop, M. Dao and S. Suresh: Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713 (2003).

    Article  CAS  Google Scholar 

  24. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas and J.L. Hay: On the measurement of stress-strain curves by spherical indentation. Thin Solid Films 398-399, 331 (2001).

    Google Scholar 

  25. S. Jayaraman, G.T. Hahn, W.C. Oliver, C.A. Rubin and P.C. Bastias: Determination of monotonic stress-strain curve of hard materials from ultra-low-load indentation tests. Int. J. Solids Struct. 35, 365 (1998).

    Article  Google Scholar 

  26. Y.T. Cheng and C.M. Cheng: Scaling relationships in conical indentation of elastic perfectly plastic solids. Int. J. Solids Struct. 36, 1231 (1999).

    Article  Google Scholar 

  27. A.E. Giannakopoulos and S. Suresh: Theory of indentation of piezoelectric materials. Scr. Mater. 40, 1191 (1999).

    Article  CAS  Google Scholar 

  28. T.A. Venkatesh, K.J. Van Vliet, A.E. Giannakopoulos and S. Suresh: Determination of elasto-plastic properties by instrumented sharp indentation: Guidelines for property extraction. Scr. Mater. 42, 833 (2000).

    Article  CAS  Google Scholar 

  29. J.L. Bucaille, S. Stauss, E. Felder and J. Michler: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663 (2003).

    Article  CAS  Google Scholar 

  30. K.D. Bouzakis and N. Michailidis: Coating elastic-plastic properties determined by means of nanoindentations and FEM-supported evaluation algorithms. Thin Solid Films 469-470, 227 (2004).

    Google Scholar 

  31. S. Suresh and A.E. Giannakopoulos: A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 465, 755 (1998).

    Google Scholar 

  32. Y.H. Lee and D. Kwon: Estimation of biaxial surface stress by instrumented indentation with sharp indenters. Acta Mater. 52, 1555 (2004).

    Article  CAS  Google Scholar 

  33. Y.H. Lee, J.Y. Kim, J.S. Lee, K.H. Kim, J.Y. Koo and D. Kwon: Using the instrumented indentation technique for stress characterization of friction stir-welded API X80 steel. Philos. Mag. 86, 5497 (2006).

    Article  CAS  Google Scholar 

  34. J.S. Lee, J.I. Jang, B.W. Lee, Y. Choi, S.G. Lee and D. Kwon: An instrumented indentation technique for estimating fracture toughness of ductile materials: A critical indentation energy model based on continuum damage mechanics. Acta Mater. 54, 1101 (2006).

    Article  CAS  Google Scholar 

  35. B.R. Lawn and E.R. Fuller: Equilibrium penny-like cracks in indentation fracture. J. Mater. Sci. 10, 2016 (1975).

    Article  CAS  Google Scholar 

  36. B.R. Lawn, A.G. Evans and D.B. Marshall: Effect of residual contact stresses on mirror-flaw-size relations. J. Am. Ceram. Soc. 63, 574 (1980).

    Article  CAS  Google Scholar 

  37. T.S. Byun, J.W. Kim and J.H. Hong: A theoretical model for determination of fracture toughness of reactor pressure-vessel steels in the transition region from automated ball indentation test. J. Nucl. Mater. 252, 187 (1998).

    Article  CAS  Google Scholar 

  38. J.Y. Kim, S.H. Kim, J.S. Lee, K.W. Lee and D. Kwon: Mechanical characterization of nano-structured materials using nanoindentation. Met. Mater. Int. 12, 219 (2006).

    Article  Google Scholar 

  39. Y.G. Wei, X.Z. Wang and M.H. Zhao: Size effect measurement and characterization in nanoindentation test. J. Mater. Res. 19, 208 (2004).

    Article  CAS  Google Scholar 

  40. J.G. Swadener, E.P. George and G.M. Pharr: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681 (2002).

    Article  Google Scholar 

  41. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Book  Google Scholar 

  42. Y.J. Park and G.M. Pharr: Nanoindentation with spherical indenters: Finite element studies of deformation in the elastic-plastic transition regime. Thin Solid Films 447-448, 246 (2004).

    Google Scholar 

  43. W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson and J.T. Wyrobek: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).

    Article  CAS  Google Scholar 

  44. Y.L. Chiu and A.H.W. Ngan: A TEM investigation on indentation plastic zones in Ni3Al(Cr,B) single crystals. Acta Mater. 50, 1599 (2002).

    Article  CAS  Google Scholar 

  45. H. Bei, E.P. George, J.L. Hay and G.M. Pharr: Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys. Rev. Lett. 95, 045501 (2005).

    Article  CAS  Google Scholar 

  46. J. Alcalà, A.C. Barone and M. Anglada: The influence of plastic hardening on surface deformation modes around Vickers and spherical indents. Acta Mater. 48, 3451 (2000).

    Article  Google Scholar 

  47. M.A.G. Maneiro and J. Rodríguez: A new consideration on spherical depth-sensing indentation. J. Mater. Lett. 62, 69 (2008).

    Article  CAS  Google Scholar 

  48. J. Rodríguez and M.A.G. Maneiro: A procedure to prevent pile up effects on the analysis of spherical indentation data in elastic-plastic materials. Mech. Mater. 39, 987 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Young Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, SK., Kim, JY., Kang, I. et al. Effective indenter radius and frame compliance in instrumented indentation testing using a spherical indenter. Journal of Materials Research 24, 2965–2973 (2009). https://doi.org/10.1557/jmr.2009.0358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0358

Navigation