Skip to main content
Log in

Elastic modulus of low-k dielectric thin films measured by load-dependent contact-resonance atomic force microscopy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Correlated force and contact resonance versus displacement responses have been resolved using load-dependent contact-resonance atomic force microscopy (AFM) to determine the elastic modulus of low-k dielectric thin films. The measurements consisted of recording simultaneously both the deflection and resonance frequency shift of an AFM cantilever probe as the probe was gradually brought in and out of contact. As the applied forces were restricted to the range of adhesive forces, low-k dielectric films of elastic modulus varying from GPa to hundreds of GPa were measurable in this investigation. Over this elastic modulus range, the reliability of load-dependent contact-resonance AFM measurements was confirmed by comparing these results with those from picosecond laser acoustic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Binning, C.F. Quate and C. Gerber: Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986).

    Google Scholar 

  2. U. Rabe, K. Janser and W. Arnold: Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. Rev. Sci. Instrum. 67, 3281 (1996).

    CAS  Google Scholar 

  3. K. Yamanaka and S. Nakano: Ultrasonic atomic force microscope with overtone excitation of cantilever. Jpn. J. Appl. Phys. 35, 3787 (1996).

    CAS  Google Scholar 

  4. O. Kolosov and K. Yamanaka: Nonlinear detection of ultrasonic vibrations in an atomic force microscope. Jpn. J. Appl. Phys. 32, L1095 (1993).

    CAS  Google Scholar 

  5. O. Sahin, S. Magonov, C. Su, C.F. Quate and O. Solgaard: An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat. Nanotechnol. 2, 507 (2007).

    Google Scholar 

  6. G. Stan, S. Krylyuk, A. Davydov, M. Vaudin, L.A. Bendersky and R.F. Cook: Surface effects on the elastic modulus of Te nanowires. Appl. Phys. Lett. 92, 241908 (2008).

    Google Scholar 

  7. G. Stan and R.F. Cook: Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy. Nano-technology 19, 235701 (2008).

    CAS  Google Scholar 

  8. U. Rabe, S. Amelio, M. Kopycinska, S. Hirsekorn, M. Kempf, M. Goken and W. Arnold: Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surf. Interface Anal. 33, 65 (2002).

    CAS  Google Scholar 

  9. D.C. Hurley, K. Shen, N.M. Jennett and J.A. Turner: Atomic force acoustic microscopy methods to determine thin-film elastic properties. J. Appl. Phys. 94, 2347 (2003).

    CAS  Google Scholar 

  10. W.D. Ducker, R.F. Cook and D.R. Clarke: Force measurement using an ac atomic force microscope. J. Appl. Phys. 67, 4045 (1990).

    Google Scholar 

  11. B. Gotsmann and H. Fuchs: Dynamic force spectroscopy of conservative and dissipative forces in an Al–Au(111) tip-sample system. Phys. Rev. Lett. 86, 2597 (2001).

    CAS  Google Scholar 

  12. H. Hölscher, S.M. Langkat, A. Schwarz and R. Wiesendanger: Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy. Appl. Phys. Lett. 81, 4428 (2002).

    Google Scholar 

  13. L. Wang, M. Ganor, S.I. Rokhlin and A. Grill: Nanoindentation analysis of mechanical properties of low to ultralow-dielectric constant SiCOH films. J. Mater. Res. 20, 2080 (2005).

    CAS  Google Scholar 

  14. D.J. Morris and R.F. Cook: Indentation fracture of low-dielectric constant films: Part I. Experiments and observations. J. Mater. Res. 23, 2429 (2008).

    CAS  Google Scholar 

  15. G.A. Antonelli, B. Perrin, B.C. Daly and D.G. Cahill: Characterization of mechanical and thermal properties using ultrafast optical metrology. MRS Bull. 31, 607 (2006).

    CAS  Google Scholar 

  16. A. Link, R. Sooryakumar, R.S. Bandhu and G.A. Antonelli: Brillouin light scattering studies of the mechanical properties of ultrathin low-k dielectric films. Appl. Phys. 100, 013507 (2006).

    Google Scholar 

  17. E. Chason and T.M. Mayer: Thin film and surface characterization by specular x-ray reflectivity. Crit. Rev. Solid State Mater. Sci. 22, 1 (1997).

    CAS  Google Scholar 

  18. M.A. Worsley, M. Roberts, S.F. Bent, S.M. Gates, T. Shaw, W. Volksen and R. Miller: Detection of open or closed porosity in low-k dielectrics by solvent diffusion. Microelectron. Eng. 82, 113 (2005).

    CAS  Google Scholar 

  19. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, 1996), p. 84.

    Google Scholar 

  20. K.L. Johnson, K. Kendall and A.D. Roberts: Surface energy and the contact of elastic solids. Proc. R. Soc. London, Ser. A 324, 301 (1971).

    CAS  Google Scholar 

  21. B.V. Derjaguin, V.M. Müller and Y.P. Toporov: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314 (1975).

    CAS  Google Scholar 

  22. M. Kopycinska-Müller, R.H. Geiss and D.C. Hurley: Contact mechanics and tip shape in AFM-based nanomechanical measurements. Ultramicroscopy 106, 466 (2006).

    Google Scholar 

  23. J.J. Vlassak and W.D. Nix: Indentation modulus of elastically anisotropic half-spaces. Philos. Mag. A 67, 1045 (1993).

    Google Scholar 

  24. A. Vincent, S. Babu and S. Seal: Surface elastic properties of porous nanosilica coatings by scanning force microscopy. Appl. Phys. Lett. 91, 161901 (2007).

    Google Scholar 

  25. M. Balantekin, A.G. Onaran and F.L. Degertekin: Quantitative mechanical characterization of materials at the nanoscale through direct measurement of time-resolved tip-sample interaction forces. Nanotechnology 19, 085704 (2008).

    CAS  Google Scholar 

  26. S.D. Solares and G. Chawla: Dual frequency modulation with two cantilevers in series: A possible means to rapidly acquire tip-sample interaction force curves with dynamic AFM. Meas. Sci. Technol. 19, 055502 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gheorghe Stan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stan, G., King, S.W. & Cook, R.F. Elastic modulus of low-k dielectric thin films measured by load-dependent contact-resonance atomic force microscopy. Journal of Materials Research 24, 2960–2964 (2009). https://doi.org/10.1557/jmr.2009.0357

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0357

Navigation