Skip to main content
Log in

Strong and ductile platelet-reinforced polymer films inspired by nature: Microstructure and mechanical properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The unique structure and mechanical properties of platelet-reinforced biological materials such as bone and seashells have motivated the development of artificial composites exhibiting new, unusual mechanical behavior. On the basis of designing principles found in these biological structures, we combined high-performance artificial building blocks to fabricate platelet-reinforced polymer matrix composites that exhibit simultaneously high tensile strength and ductility. The mechanical properties are correlated with the underlying microstructure of the composites before and after mechanical loading using transmission electron microscopy. The critical role of the strength of the platelet–polymer interface and its dependence on the platelet surface chemistry and the type of matrix polymer are studied. Thin multilayered films with highly oriented platelets were produced through the bottom-up layer-by-layer assembly of submicrometer-thin alumina platelets and either polyimide or chitosan as polymer matrix. The tensile strength and strain at rupture of the prepared composites exceeded that of nacre, whereas the elastic modulus reached values similar to that of lamellar bones. In contrast to the brittle failure of clay-reinforced composites of similar or higher strength and stiffness, our composites exhibit plastic deformation in the range of 2–90% before failure. In addition to the high reinforcing efficiency and ductility achieved, several toughening mechanisms were identified in fractured composites, namely friction, debonding, and formation of microcracks at the platelet–polymer interface, as well as plastic deformation and void formation within the continuous polymeric phase. The combination of high strength, ductility, and toughness was achieved by selecting platelets that exhibit an aspect ratio high enough to carry significant load but small enough to allow for fracture under the platelet pull-out mode. At high concentrations of platelets, the ductility gets lost because of out-of-plane misalignment of the platelets and incorporation of voids in the microstructure during processing. The designing principles applied in this study can potentially be extended to other types of platelets and polymers to obtain new, hybrid materials with tunable mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Lowenstam and S. Weiner: On Biomineralization (Oxford University Press, New York, 1989), pp. IX, 324.

    Book  Google Scholar 

  2. M. Sarikaya, J. Liu and I.A. Aksay: Nacre: Properties, crystal-lography, morphology, and formation, in Biomimetics Design and Processing of Materials, edited by M. Sarikaya and I.A. Aksay (AIP Press, Woodbury, NY, 1995), pp. XI, 285.

    Google Scholar 

  3. G. Mayer: Rigid biological systems as models for synthetic composites. Science 310, 1144 (2005)

    Article  CAS  Google Scholar 

  4. A. Lin and M.A. Meyers: Growth and structure in abalone shell. Mater. Sci. Eng., A 390, 27 (2005)

    Article  Google Scholar 

  5. M. Rousseau, E. Lopez, P. Stempfle, M. Brendle, L. Franke, A. Guette, R. Naslain and X. Bourrat: Multiscale structure of sheet nacre. Biomaterials 26, 6254 (2005)

    Article  CAS  Google Scholar 

  6. N. Nassif, N. Pinna, N. Gehrke, M. Antonietti, C. Jager and H. Colfen: Amorphous layer around aragonite platelets in nacre. Proc. Nat. Acad. Sci. U.S.A. 102, 12653 (2005)

    Article  CAS  Google Scholar 

  7. J.D. Currey: Mechanical-properties of mother of pearl in Tension. Proc. R. Soc. London, Ser. B 196, 443 (1977)

    Article  Google Scholar 

  8. A.P. Jackson, J.F.V. Vincent and R.M. Turner: The mechanical design of nacre. Proc. R. Soc. London, Ser. B 234, 415 (1988)

    Article  Google Scholar 

  9. H.D. Wagner and S. Weiner: On the relationship between the microstructure of bone and its mechanical stiffness. J. Biomech. 25, 1311 (1992)

    Article  CAS  Google Scholar 

  10. I. Jager and P. Fratzl: Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79, 1737 (2000)

    Article  CAS  Google Scholar 

  11. A.G. Evans, Z. Suo, R.Z. Wang, I.A. Aksay, M.Y. He and J.W. Hutchinson: Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475 (2001)

    Article  CAS  Google Scholar 

  12. H.J. Gao, B.H. Ji, I.L. Jager, E. Arzt and P. Fratzl: Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Nat. Acad. Sci. U.S.A. 100, 5597 (2003)

    Article  CAS  Google Scholar 

  13. F. Barthelat, H. Tang, P.D. Zavattieri, C.M. Li and H.D. Espinosa: On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306 (2007)

    Article  CAS  Google Scholar 

  14. G.E. Padawer and N. Beecher: On strength and stiffness of planar reinforced plastic resins. Polym. Eng. Sci. 10, 185 (1970)

    Article  CAS  Google Scholar 

  15. J. Lusis, R.T. Woodhams and M. Xanthos: Effect of flake aspect ratio on flexural properties of mica reinforced plastics. Polym. Eng. Sci. 13, 139 (1973)

    Article  CAS  Google Scholar 

  16. J. Rexer and E. Anderson: Composites with planar reinforcements (flakes, ribbons)–Review. Polym. Eng. Sci. 19, 1 (1979)

    Article  CAS  Google Scholar 

  17. N. Almqvist, N.H. Thomson, B.L. Smith, G.D. Stucky, D.E. Morse and P.K. Hansma: Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng., C 7, 37 (1999)

    Article  Google Scholar 

  18. S.S. Ray and M. Okamoto: Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1539 (2003)

    Article  CAS  Google Scholar 

  19. S. Deville, E. Saiz, R.K. Nalla and A.P. Tomsia: Freezing as a path to build complex composites. Science 311, 515 (2006)

    Article  CAS  Google Scholar 

  20. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia and R.O. Ritchie: Tough, bio-inspired hybrid materials. Science 322, 1516 (2008)

    Article  CAS  Google Scholar 

  21. E.R. Kleinfeld and G.S. Ferguson: Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science 265, 370 (1994)

    Article  CAS  Google Scholar 

  22. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen and R.S. Ruoff: Graphene-based composite materials. Nature 442, 282 (2006)

    Article  CAS  Google Scholar 

  23. P.B. Messersmith and E.P. Giannelis: Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem. Mater. 6, 1719 (1994)

    Article  CAS  Google Scholar 

  24. D. Schmidt, D. Shah and E.P. Giannelis: New advances in polymer/layered silicate nanocomposites. Curr. Opin. Solid State Mater. Sci. 6, 205 (2002)

    Article  CAS  Google Scholar 

  25. N. Sheng, M.C. Boyce, D.M. Parks, G.C. Rutledge, J.I. Abes and R.E. Cohen: Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45(2), 487 (2004).

    Article  CAS  Google Scholar 

  26. D. Hull and T.W. Clyne: An Introduction to Composite Materials, 2nd ed. (Cambridge University Press, Cambridge, 1996), p. 326.

    Book  Google Scholar 

  27. A. Okada and A. Usuki: The chemistry of polymer-clay hybrids. Mater. Sci. Eng., C 3, 109 (1995)

    Article  Google Scholar 

  28. P. Podsiadlo, A.K. Kaushik, E.M. Arruda, A.M. Waas, B.S. Shim, J.D. Xu, H. Nandivada, B.G. Pumplin, J. Lahann, A. Ramamoorthy and N.A. Kotov: Ultrastrong and stiff layered polymer nanocomposites. Science 318, 80 (2007)

    Article  CAS  Google Scholar 

  29. L.J. Bonderer, A.R. Studart and L.J. Gauckler: Bioinspired design and assembly of platelet reinforced polymer films. Science 319, 1069 (2008)

    Article  CAS  Google Scholar 

  30. B. Glavinchevski and M. Piggott: Steel disk reinforced polycarbonate. J. Mater. Sci. 8, 1373 (1973)

    Article  CAS  Google Scholar 

  31. Z.Y. Tang, N.A. Kotov, S. Magonov and B. Ozturk: Nanostructured artificial nacre. Nat. Mater. 2, 413 (2003)

    Article  CAS  Google Scholar 

  32. S. Krohn: Characterization and applications of short-chain chitosans. Ph.D. dissertation, Christian-Albrechts-Universität, Kiel, Germany, 2003.

    Google Scholar 

  33. M.A. Bartlett and M.D. Yan: Fabrication of polymer thin films and arrays with spatial and topographical controls. Adv. Mater. 13, 1449 (2001)

    Article  CAS  Google Scholar 

  34. F. Macionczyk: Determination of mechanical properties of thin Al and AlCu-layers on polyimide foils by tensile testing. Ph.D. dissertation, Shaker, Aachen, Germany, 1999, p. 131.

    Google Scholar 

  35. M.D. Vaudin, M.W. Rupich, M. Jowett, G.N. Riley and J.F. Bingert: A method for crystallographic texture investigations using standard x-ray equipment. J. Mater. Res. 13, 2910 (1998)

    Article  CAS  Google Scholar 

  36. M.D. Vaudin: Software TexturePlus (NIST, Gaithersburg, MD, 2006).

    Google Scholar 

  37. R.Z. Wang, Z. Suo, A.G. Evans, N. Yao and I.A. Aksay: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485 (2001)

    Article  CAS  Google Scholar 

  38. J.S. Robinson, L.M. Cukrov, T. Tsuzuki, D.A. Lee, P.G. McCormick, J. Robinson, L. Heatley, D. Lee, P. McCormick and L.M. Heatley: Process for the production of ultrafine plate-like alumina particles. Patent No. WO/2004/060804 (July 22, 2004).

    Google Scholar 

  39. W.J. Landis, J.J. Librizzi, M.G. Dunn and F.H. Silver: A study of the relationship between mineral-content and mechanical-properties of turkey gastrocnemius tendon. J. Bone Miner. Res. 10, 859 (1995)

    Article  CAS  Google Scholar 

  40. H. Sano, B. Ciucchi, W.G. Matthews and D.H. Pashley: Tensile properties of mineralized and demineralized human and bovine dentin. J. Dent. Res. 73, 1205 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz J. Bonderer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonderer, L.J., Studart, A.R., Woltersdorf, J. et al. Strong and ductile platelet-reinforced polymer films inspired by nature: Microstructure and mechanical properties. Journal of Materials Research 24, 2741–2754 (2009). https://doi.org/10.1557/jmr.2009.0340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0340

Navigation