Skip to main content
Log in

Fabrication of high-strength transparent MgAl2O4 spinel polycrystals by optimizing spark-plasma-sintering conditions

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

By optimizing the heating rate during spark-plasma-sintering (SPS) processing, a high-strength transparent spinel (MgAl2O4) can be successfully fabricated for only a 20-min soak at 1300 °C. For the heating rates of ≤10 °C/min, the spinel exhibits an excellent combination of in-line transmission (50–70%), four-point-bending strength (>400 MPa), and hardness (>15 GPa). The excellent optical and mechanical properties can be ascribed to the superimposed effects of the sub-micrograin size, fine-pore size, and low porosity, which are related closely to the heating rate during the SPS processing. The present study demonstrates that to attain a high-strength transparent spinel at low temperatures and short sintering times, the low-heating-rate SPS processing is more efficient compared with the high-heating-rate SPS processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006)

    CAS  Google Scholar 

  2. R. Chaim, J.Z. Shen and M. Nygren: Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering. J. Mater. Res. 19, 2527 (2004)

    CAS  Google Scholar 

  3. U. Anselmi-Tamburini, J.N. Woolman and Z. Munir: Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Adv. Funct. Mater. 17, 3267 (2007)

    CAS  Google Scholar 

  4. D.T. Jiang, D.M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land and A.K. Mukherjee: Optically transparent polycrystalline Al2O3 produced by spark plasma sintering. J. Am. Ceram. Soc. 91, 151 (2008)

    CAS  Google Scholar 

  5. B.N. Kim, K. Hiraga, K. Morita and H. Yoshida: Spark plasma sintering of transparent alumina. Scr. Mater. 57, 607 (2007)

    CAS  Google Scholar 

  6. B.N. Kim, K. Hiraga, K. Morita and H. Yoshida: Effects of heating rate on microstructure and transparency of spark-plasma-sintered alumina. J. Eur. Ceram. Soc. 29, 323 (2009)

    CAS  Google Scholar 

  7. B.N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki and Y. Kagawa: Microstructure and optical properties of transparent alumina. Acta Mater. 57, 1319 (2009)

    CAS  Google Scholar 

  8. K. Morita, B.N. Kim, K. Hiraga and H. Yoshida: Fabrication of transparent MgAl2O4spinel polycrystal by spark-plasma-sintering processing. Scr. Mater. 58, 1114 (2008)

    CAS  Google Scholar 

  9. K. Morita, B.N. Kim, K. Hiraga and H. Yoshida: Spark-plasma-sintering (SPS) condition optimization for producing transparent MgAl2O4 spinel polycrystal. J. Am. Ceram. Soc. 92, 1208 (2009)

    CAS  Google Scholar 

  10. I.E. Reimanis, H.J. Kleebe, R.L. Cook and A. DiGiovanni: Transparent spinel fabricated from novel powders: Synthesis, microstructure and optical properties, in Proceedings of International Society for Optical Engineering (SPIE) Defense and Security Symposium (Orlando, FL, 2004), p. 30.

    Google Scholar 

  11. R. Cook, M. Kochis, I. Reimanis and H.J. Kleebe: A new powder production route for transparent spinel windows: Powder synthesis and window properties, in Proceedings of the SPIE, Window and Dome Technologies and Materials IX, Vol. 5786, edited by R.W. Tustison (Orlando, FL, 2005), p. 41.

    CAS  Google Scholar 

  12. G.R. Villalobos, J.S. Sanghera and I.D. Aggarwal: Degradation of magnesium aluminum spinel by lithium fluoride sintering aid. J. Am. Ceram. Soc. 88, 1321 (2005)

    CAS  Google Scholar 

  13. R.J. Bratton: Translucent sintered MgAl2O4. J. Am. Ceram. Soc. 57, 283 (1974)

    CAS  Google Scholar 

  14. K. Hamano and S. Kanzaki: Fabrication of transparent spinel ceramics by reactive hot-pressing. J. Ceram. Soc. Jpn. 85, 225 (1977)

    CAS  Google Scholar 

  15. M. Shimada, T. Endo, T. Saito and T. Sato: Fabrication of transparent spinel polycrystalline materials. Mater. Lett. 28, 413 (1996)

    CAS  Google Scholar 

  16. K. Tsukuma: Transparent MgAl2O4 spinel ceramics produced by HIP post-sintering. J. Ceram. Soc. Jpn. 114, 802 (2006)

    CAS  Google Scholar 

  17. N. Frage, S. Cohen, S. Meir, S. Kalabukhov and M.P. Darie: Spark plasma sintering (SPS) of transparent magnesium-alumi-nate spinel. J. Mater. Sci. 42, 3273 (2007)

    CAS  Google Scholar 

  18. A. Krell, J. Klimke and T. Hutzler: Advanced spinel and sub-mm Al2O3 for transparent armour applications. J. Eur. Ceram. Soc. 29, 275 (2009)

    CAS  Google Scholar 

  19. R. Apetz and M.P.B. van Bruggen: Transparent alumina: A light-scattering model. J. Am. Ceram. Soc. 86, 480 (2003)

    CAS  Google Scholar 

  20. G.R. Anstis, P. Chantikul, B.R. Lawn and D.B. Marshall: A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J. Am. Ceram. Soc. 64, 533 (1981)

    CAS  Google Scholar 

  21. T.E. Mitchell: Dislocations and mechanical properties of MgOAl2O3 spinel single crystals. J. Am. Ceram. Soc. 82, 3305 (1999)

    CAS  Google Scholar 

  22. A.F. Dericioglu and Y. Kagawa: Effect of grain boundary micro-cracking on the light transmittance of sintered transparent MgAl2O4. J. Eur. Ceram. Soc. 23, 951 (2003)

    CAS  Google Scholar 

  23. A. Krell, J. Klimke and T. Hutzler: Transparent compact ceramics: Inherent physical issues. Opt. Mater. 31, 1144 (2009)

    CAS  Google Scholar 

  24. D.W. Roy, J.L. Hastert, L.E. Coubrough, K.E. Green and A. Trujillo: Method for producing transparent polycrystalline body with high ultraviolet transmittance. U.S. Patent No. 5244849 (1993).

  25. P.J. Patel, G.A. Gilde, P.G. Dehmer and J.W. McCauley: Transparent armor. AMPTIAC Newsletter 4, 1 (2000)

    Google Scholar 

  26. R.W. Rice: Grain size and porosity dependence of ceramic fracture energy and toughness at 22C. J. Meat Sci. 31, 1969 (1996)

    CAS  Google Scholar 

  27. A. Krell and P. Blank: Grain size dependence of hardness in dense submicrometer alumina. J. Am. Ceram. Soc. 78, 1118 (1995)

    CAS  Google Scholar 

  28. J.G.J. Peelen and R. Metselaar: Light scattering by pores in poly-crystalline materials: Transmission properties of alumina. J. Appl. Phys. 45, 216 (1974)

    CAS  Google Scholar 

  29. S. Meir, S. Kalabukhov, N. Froumin, M.P. Dariel and N. Frage: Synthesis and densification of transparent magnesium aluminate spinel by sps processing. J. Am. Ceram. Soc. 92, 358 (2009)

    CAS  Google Scholar 

  30. G. Bernard-Granger, N. Benameur, C. Guizard and M. Nygren: Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering. Scr. Mater. 60, 164 (2009)

    CAS  Google Scholar 

  31. S. Kanzaki, K. Saito, Z. Nakagawa and K. Hamano: Variation of transparency and microstructure on annealing of hot-pressed MgAl spinel ceramics. Yogyo-kyoukai-shi 86, 485 (1978)

    CAS  Google Scholar 

  32. B.N. Kim, K. Hiraga, K. Morita and H. Yoshida: Unpublished data.

  33. U. Anselmi-Tamburini, J.N. Woolman and Z.A. Munir: Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Adv. Funct. Mater. 17, 3267 (2007)

    CAS  Google Scholar 

  34. S.J. Bennison and M.P. Harmer: Swelling of hot-pressed Al2O3. J. Am. Ceram. Soc. 68, 591 (1985)

    CAS  Google Scholar 

  35. B. Savoini, C. Ballesteros, J.E. Muñoz Santiuste, R. González and Y. Chen: Thermochemical reduction of yttria-stabilized-zirconia crystals: Optical and electron microscopy. Phys. Rev. B 57, 13439 (1998)

    CAS  Google Scholar 

  36. J.J. Petrovic and M.G. Mendiratta: Fracture from controlled surface flaw, in Proceedings of the Eleventh National Symposium on Fracture Mechanics: Part II, Fracture Mechanics Applied to Brittle Materials, edited by S.W. Freiman (1979), p. 83.

    Google Scholar 

  37. J.J. Petrovic, L.A. Jacobson, P.K. Talty and K.A. Vasudevan: Controlled surface flaws in hot-pressed Si3N4. J. Am. Ceram. Soc. 58, 113 (1975)

    CAS  Google Scholar 

  38. A. Krell: Fracture origin and strength in advanced pressurelesssintered alumina. J. Am. Ceram. Soc. 81, 1900 (1998)

    CAS  Google Scholar 

  39. A. Krell, P. Blank, H. Ma and T. Hutzler: Transparent sintered corundum with high hardness and strength. J. Am. Ceram. Soc. 86, 12 (2003)

    CAS  Google Scholar 

  40. D. Chakravarty, S. Bysakh, K. Muraleedharan, T.N. Rao and R. Sundaresan: Spark plazma sintering of magnesia-doped alumina with high hardness and fracture toughness. J. Am. Ceram. Soc. 91, 203 (2008)

    CAS  Google Scholar 

  41. R.W. Rice, C.C. Wu and F. Boichelt: Hardness–grain-size relations in ceramics. J. Am. Ceram. Soc. 77, 2539 (1994)

    CAS  Google Scholar 

  42. D. Ehre and R. Chaim: Abnormal Hall-Petch behavior in nanocrystalline MgO ceramic. J. Math. Sci. 43, 6139 (2008)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Morita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morita, K., Kim, BN., Hiraga, K. et al. Fabrication of high-strength transparent MgAl2O4 spinel polycrystals by optimizing spark-plasma-sintering conditions. Journal of Materials Research 24, 2863–2872 (2009). https://doi.org/10.1557/jmr.2009.0335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0335

Navigation