Skip to main content
Log in

The effects of ruthenium-oxidation states on Ru dissolution in PtRu thin-film electrodes

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of ruthenium (Ru)-oxidation states were investigated on Ru dissolution from PtRu thin-film electrodes, with the 200 cycles between 0.4 and 1.05 V (versus normal hydrogen electrode). The Ru-oxidation states of the PtRu thin films were systematically modified by an anodic (oxidation) treatment. The anodic-treated PtRu electrodes, whose methanol-oxidation activity was similar to untreated electrodes before the 200 cycles, showed a remarkable decrease in methanol oxidation after the cycles, because of the Ru dissolution from the PtRu surface. The results suggest that the Ru-oxide species are the origin of Ru dissolution in the PtRu alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Carrette, K.A. Friedrich, and U. Stimming: Fuel cells—Fundamentals and applications. Fuel Cells 1, 5 (2001)

    Article  CAS  Google Scholar 

  2. E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E.S. Smotkin, and T.E. Mallouk: Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science 280, 1735 (1998)

    Article  CAS  Google Scholar 

  3. B. Lee, C. Kim, Y. Park, T.G. Kim, and B. Park: Nanostructured platinum/iron phosphate thin-film electrodes for methanol oxidation. Electrochem. Solid-State Lett. 9, E27 (2006)

    Article  CAS  Google Scholar 

  4. M. Watanabe and S. Motoo: Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 60, 267 (1975)

    Article  CAS  Google Scholar 

  5. H. Gasteiger, N. Markovic, P. Ross, and E.J. Cairns: Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. J. Phys. Chem. 97, 12020 (1993)

    Article  CAS  Google Scholar 

  6. J. Goodenough, R. Manoharan, A.K. Shukla, and K.V. Rameshand: Intra-alloy electron transfer and catalyst performance: A spectroscopic and electrochemical study. Chem. Mater. 1, 391 (1989)

    Article  CAS  Google Scholar 

  7. E. Herrero, K. Franaszczuk, and A. Wiekowski: Crystal planes of platinum: An integrated voltammetric and chronoamperometric study. J. Phys. Chem. 98, 5074 (1994)

    Article  CAS  Google Scholar 

  8. C. Kim, B. Lee, Y. Park, B. Park, J. Lee, and H. Kim: Iron-phosphate/platinum/carbon nanocomposites for enhanced electro-catalytic stability. Appl. Phys. Lett. 91, 113101 (2007)

    Article  Google Scholar 

  9. P. Piela, C. Eickes, E. Brosha, F. Garzon, and P. Zelenay: Ruthenium crossover in direct methanol fuel cell with Pt–Ru black anode. J. Electrochem. Soc. 151, A2053 (2004)

    Article  CAS  Google Scholar 

  10. W.L. Holstein and H.D. Rosenfeld: In-situ x-ray absorption spectroscopy study of Pt and Ru chemistry during methanol electro-oxidation. J. Phys. Chem. B 109, 2176 (2005)

    Article  CAS  Google Scholar 

  11. Y. Park, B. Lee, C. Kim, J. Kim, and B. Park: The effects of iron-phosphate coating on Ru dissolution in the PtRu thin-film electrodes. J. Mater. Res. 24, 140 (2009)

    Article  CAS  Google Scholar 

  12. F. Liu, Q. Yan, W.J. Zhou, X.S. Zhao, and J.Y. Lee: High regularity porous oxophilic metal films on Pt as model bifunctional catalysts for methanol oxidation. Chem. Mater. 18, 4328 (2006)

    Article  CAS  Google Scholar 

  13. H. Li, G. Sun, Y. Gao, Q. Jiang, Z. Jia, and Q. Xin: Effect of reaction atmosphere on the electrocatalytic activities of Pt/C and PtRu/C obtained in a polyol process. J. Phys. Chem. C 111, 15192 (2007)

    Article  CAS  Google Scholar 

  14. W. Dmowski, T. Egami, K.E. Swider-Lyons, C.T. Love, and D.R. Rolison: Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from x-ray scattering. J. Phys. Chem. 10B 6, 12677 (2002)

    Article  Google Scholar 

  15. J.W. Long, R.M. Stroud, K.E. Swider-Lyons, and D.R. Rolison: How to make electrocatalysts more active for direct methanol oxidation-avoid PtRu bimetallic alloys. J. Phys. Chem. B 104, 9772 (2000)

    Article  CAS  Google Scholar 

  16. A. Arico, P. Creti, H. Kim, R. Mantegna, N. Giordano, and V. Antonucci: Analysis of the electrochemical characteristics of a direct methanol fuel cell based on a Pt–Ru/C anode catalyst. J. Electrochem. Soc. 143, 3950 (1996)

    Article  CAS  Google Scholar 

  17. X. Zhang and K.Y. Chan: Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties. Chem. Mater. 15, 451 (2003)

    Article  CAS  Google Scholar 

  18. S. Doniach and M. Sunjic: Many-electron singularity in x-ray photoemission and x-ray line spectra from metals. J. Phys. C: Solid State Phys. 3, 285 (1970)

    Article  CAS  Google Scholar 

  19. P.N.K. Deenapanray, M. Petravic, K.J. Kim, B. Kim, and G. Li: Compositional changes on GaN surfaces under low-energy ion bombardment studied by synchrotron-based spectroscopies. Appl. Phys. Lett. 83, 4948 (2003)

    Article  CAS  Google Scholar 

  20. B.P. Hahn, R.A. May, and K.J. Stevenson: Electrochemical deposition and characterization of mixed-valent rhenium oxide films prepared from a perrhenate solution. Langmuir 23, 10837 (2007)

    Article  CAS  Google Scholar 

  21. K.H. Chang and C.C. Hu: Coalescence inhibition of hydrous RuO2 crystallites prepared by a hydrothermal method. Appl. Phys. Lett. 88, 193102 (2006)

    Article  Google Scholar 

  22. T.J. Schmidt, H.A. Gasteiger, G.D. Stäb, P.M. Uraban, D.M. Kolb, and R.J. Behm: Characterization of high surface area electrocata-lysts using a rotating disk electrode configuration. J. Electrochem. Soc. 145, 2354 (1998)

    Article  CAS  Google Scholar 

  23. Q. Lu, B. Yang, L. Zhuang, and J. Lu: Anodic activation of PtRu/C catalysts for methanol oxidation. J. Phys. Chem. B 109, 1715 (2005)

    Article  CAS  Google Scholar 

  24. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001)

    Article  CAS  Google Scholar 

  25. C. Kim, Y. Park, C. Nahm, and B. Park: Formation of nanoporous Pt thin films by electrochemical dissolution. Electron. Mater. Lett. 4, 75 (2008)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y., Lee, B., Kim, C. et al. The effects of ruthenium-oxidation states on Ru dissolution in PtRu thin-film electrodes. Journal of Materials Research 24, 2762–2766 (2009). https://doi.org/10.1557/jmr.2009.0331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0331

Navigation