Skip to main content
Log in

Corrosion products on biomedical magnesium alloy soaked in simulated body fluids

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Magnesium alloys are potential materials in biodegradable hard tissue implants. Their degradation products in the physiological environment not only affect the degradation process but also influence the biological response of bone tissues. In the work reported here, the composition and structure of the corrosion product layer on AZ91 magnesium alloy soaked in a simulated physiological environment, namely simulated body fluids (SBFs), are systematically investigated using secondary electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and in situ monitoring of the corrosion morphology. Our results show that the corrosion product layer comprises mainly amorphous magnesium (calcium) phosphates, magnesium (calcium) carbonates, magnesium oxide/hydroxide, and aluminum oxide/hydroxide. The magnesium phosphates preferentially precipitate at obvious corrosion sites and are present uniformly in the corrosion product layer, whereas calcium phosphates nucleate at passive sites first and tend to accumulate at isolated and localized sites. According to the cross sectional views, the corrosion product layer possesses a uniform structure with thick regions several tens of micrometers as well as thin areas of several micrometers in some areas. Localized corrosion is the main reason for the nonuniform structure as indicated by the pan and cross-sectional views. The results provide valuable information on the cytotoxicity of magnesium alloys and a better understanding on the degradation mechanism of magnesium alloys in a physiological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.D. McBride: Absorbable metal in bone surgery. J. Am. Med. Assoc. 111, 2464 (1938).

    Article  CAS  Google Scholar 

  2. J. Vormann: Magnesium: Nutrition and metabolism. Mol. Aspects Med. 24, 27 (2003).

    Article  CAS  Google Scholar 

  3. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, and H. Windhagen: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557 (2005).

    Article  CAS  Google Scholar 

  4. H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, and M. Shakibaei: Mechanisms of magnesiumstimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. 62, 175 (2002).

    Article  CAS  Google Scholar 

  5. P.A. Revell, E. Damien, X.S. Zhang, P. Evans, and C.R. Howlett: The effect of magnesium ions on bone bonding to hydroxyapatite. Key Eng. Mater. 254, 447 (2004).

    Google Scholar 

  6. Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Kubo, Y. Akagawa, and T. Uchida: Action of FG-MgCO3 Ap-collagen composite in promoting bone formation. Biomaterials 24, 4913 (2003).

    Article  CAS  Google Scholar 

  7. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27, 1728 (2006).

    Article  CAS  Google Scholar 

  8. Y.C. Xin, K.F. Huo, T. Hu, G.Y. Tang, and P.K. Chu: Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 4, 2008 (2008).

    Article  CAS  Google Scholar 

  9. G.L. Song and A. Atrens: Understanding magnesium corrosion–A framework for improved alloy performance. Adv. Eng. Mater. 5, 837 (2003).

    Article  CAS  Google Scholar 

  10. N.C. Quach, P.J. Uggowitzer, and P. Schmutz: Corrosion behaviour of an Mg-Y-RE alloy used in biomedical applications studied by electrochemical techniques. C.R. Chim. 11, 1043 (2008).

    Article  CAS  Google Scholar 

  11. H. Kuwahara, Y. Al-Abdullat, M. Ohta, S. Tsutsumi, K. Ikeuchi, and N. Mazaki: Surface reaction of magnesium in Hank’s solutions. Mater. Sci. Forum 350, 349 (2000).

    Article  Google Scholar 

  12. L.P. Xu, G.N. Yu, E. Zhang, F. Pan, and K. Yang: In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J. Biomed. Mater. Res. 83, 703 (2007).

    Article  Google Scholar 

  13. Z.J. Li, X.N. Gu, S.Q. Lou, and Y.F. Zheng: The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29, 1329 (2008).

    Article  CAS  Google Scholar 

  14. L.C. Li, J.C. Gao, and Y. Wang: Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf. Coat. Technol. 185, 92 (2004).

    Article  CAS  Google Scholar 

  15. H. Kuwahara, Y. Al-Abdullat, N. Mazaki, S. Tsutsumi, and T. Aizawa: Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank’s solution. Mater. Trans., JIM 42, 1317 (2001).

    Article  CAS  Google Scholar 

  16. R. Rettig and S. Virtanen: Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. J. Biomed. Mater. Res. 88A, 359 (2004).

    Article  Google Scholar 

  17. Y.C. Xin, C.L. Liu, X.M. Zhang, G.Y. Tang, X.B. Tian, and P.K. Chu: Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J. Mater. Res. 22, 2004 (2007).

    Article  CAS  Google Scholar 

  18. S.B. Cho, K. Nakanishi, T. Kokubo, N. Soga, C. Ohtsuki, T. Nakamura, T. Kitsugi, and T. Yamauro: Dependence of apatite formation on silica-gel on its structure—Effect of heat-treatment. J. Am. Ceram. Soc. 78, 1769 (1995).

    Article  CAS  Google Scholar 

  19. G.L. Song and A. Atrens: Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11 (1999).

    Article  CAS  Google Scholar 

  20. S.V. Golubev, O.S. Pokrovsky, and V.S. Savenko: Unseeded precipitation of calcium and magnesium phosphates from modified seawater solutions. J. Cryst. Growth 205, 354 (1999).

    Article  CAS  Google Scholar 

  21. W. Tongamp, Q.W. Zhang, and F. Saito: Preparation of meixnerite (Mg-Al-OH) type layered double hydroxide by a mechanochemical route. J. Mater. Sci. 42, 9210 (2007).

    Article  CAS  Google Scholar 

  22. J. Weng, Q. Liu, J.G.C. Wolke, X.D. Zhang, and K. deGroot: Formation and characteristics of the apatite layer on plasmasprayed hydroxyapatite coatings in simulated body fluid. Biomaterials 18, 1027 (1997).

    Article  CAS  Google Scholar 

  23. J. Martin, P. Dan, and T. Dominique: Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D. Corros. Sci. 49, 1540 (2007).

    Article  Google Scholar 

  24. L.T. Canham, C.L. Reeves, A. Loni, M.R. Houlton, J.P. Newey, A.J. Simons, and T.I. Cox: Calcium phosphate nucleation on porous silicon: Factors influencing kinetics in acellular simulated body fluids. Thin Solid Films 297, 304 (1997).

    Article  CAS  Google Scholar 

  25. L.M. Epure, S. Dimitrievska, Y. Merhi, and L.H. Yahia: The effect of varying Al2O3 percentage in hydroxyapatite/Al2O3 composite materials: Morphological, Chemical and cytotoxic evaluation. J. Biomed. Mater. Res. 83, 1009 (2007).

    Article  CAS  Google Scholar 

  26. M.A. Aramendia, V. Borau, C. Jiménez, J.M. Marinas, F.J. Romcro, J.A. Navío, and J. Barrios: Modification of the activity of Mg3(PO4)2 in the gas-phase conversion of cyclohexanol by addition of sodium carbonate. J. Catal. 157, 97 (1995).

    Article  CAS  Google Scholar 

  27. D.V. Kilpadi, G.N. Raikar, J. Liu, Y. Vohra, and J.C. Gregory: Effect of surface treatment on unalloyed titanium implants: Spectroscopic analyses. J. Biomed. Mater. Res. 40, 646 (1998).

    Article  CAS  Google Scholar 

  28. N.C. Hosking, M.A. Strom, P.H. Shipway, and C.D. Rudd: Corrosion resistance of zinc-magnesium coated steel. Corros. Sci. 49, 3669 (2007).

    Article  CAS  Google Scholar 

  29. H.Y. Hsiao and W.T. Tsai: Characterization of anodic films formed on AZ91 D magnesium alloy. Surf. Coat. Technol. 190, 299 (2005).

    Article  CAS  Google Scholar 

  30. Y. Tanimoto, Y. Shibata, Y. Kataoka, T. Miyazaki, and N. Nishiyama: Osteoblast-like cell proliferation on tape-cast and sintered tricalcium phosphate sheets. Acta Biomater. 4, 397 (2008).

    Article  CAS  Google Scholar 

  31. E. Landi, S. Sprio, M. Sandri, G. Celotti, and A. Tampieri: Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. Acta Biomater. 4, 656 (2008).

    Article  CAS  Google Scholar 

  32. S.R. Kim, J.H. Lee, Y.T. Kim, D.H. Riu, S.J. Jung, Y.J. Lee, S.C. Chung, and Y.H. Kim: Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials 24, 1389 (2003).

    Article  Google Scholar 

  33. K. Soto, K.M. Garza, and L.E. Murr: Cytotoxic effects of aggregated nanomaterials. Acta Biomater. 3, 351 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoyi Tang or Paul K. Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, Y., Huo, K., Hu, T. et al. Corrosion products on biomedical magnesium alloy soaked in simulated body fluids. Journal of Materials Research 24, 2711–2719 (2009). https://doi.org/10.1557/jmr.2009.0323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0323

Navigation