Skip to main content
Log in

Atomic-scale structural and compositional analyses of Ruddlesden-Popper planar faults in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructure in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics is strongly affected by the formation of Ruddlesden-Popper fault-rich (RP fault) lamellae, which are coherently intergrown with the matrix of the perovskite grains. We studied the structure and chemistry of RP faults by applying quantitative high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy analyses. We showed that the Sr2+ and Ca2+ dopant ions form RP faults during the initial stage of sintering. The final microstructure showed preferentially grown RP fault lamellae embedded in the central part of the anisotropic perovskite grains. In contrast, the dopant Ba2+ ions preferably substituted for Sr2+ in the SrTiO3 matrix by forming a BaxSr1−xTiO3 solid solution. The surplus of Sr2+ ions was compensated structurally in the later stages of sintering by the formation of SrO-rich RP faults. The resulting microstructure showed RP fault lamellae located at the surface of equiaxed BaxSr1-xTiO3 perovskite grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Cocco and F. Massazza: Microscopic study of the system SrOTiO2. Ann. Chim. (Rome) 53, 883 (1963).

    CAS  Google Scholar 

  2. G.J. McCarthy, W.B. White, and R. Roy: Phase equilibria in the 1375 °C isotherm of the system Sr-Ti-O. J. Am. Ceram. Soc. 52, 463 (1969).

    Article  CAS  Google Scholar 

  3. S. Witek, D.M. Smyth, and H. Pickup: Variability of the Sr/Ti ratio in SrTiO3. J. Am. Ceram. Soc. 67, 372 (1984).

    Article  CAS  Google Scholar 

  4. S.N. Ruddlesden and P. Popper: The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11, 54 (1958).

    Article  CAS  Google Scholar 

  5. K.R. Udayakumar and A.N. Cormack: Structural aspects of phase equilibria in the strontium-titanium-oxygen system. J. Am. Ceram. Soc. 71, C–469 (1988).

    Article  Google Scholar 

  6. K. Hawkins and T.J. White: Defect structure and chemistry of (CaxSr1-x)n+1TinO3n+1 layer perovskites. Philos. Trans. R. Soc. London, Ser. A 336, 541 (1991).

    Article  CAS  Google Scholar 

  7. M.A. McCoy, R.W. Grimes, and W.E. Lee: Phase stability and interfacial structures in the SrO-SrTiO3 system. Philos. Mag. A 75, 833 (1997).

    Article  CAS  Google Scholar 

  8. C. Noguera: Theoretical investigation of the Ruddlesden-Popper compounds Srn+1TinO3n+1(n=1-3). Philos. Mag. Lett. 80, 173 (2000).

    Article  CAS  Google Scholar 

  9. O. Le Bacq, E. Salinas, A. Pisch, C. Bernard, and A. Pasturel: First-principles structural stability in the strontium-titaniumoxygen system. Philos. Mag. 86, 2283 (2006).

    Article  Google Scholar 

  10. R.J. Tilley: An electron microscope study of perovskite-related oxides in the Sr-Ti-O system. J. Solid State Chem. 21, 293 (1977).

    Article  CAS  Google Scholar 

  11. M. Fujimoto, J. Tanaka, and S. Shirasaki: Planar faults and grain boundary precipitation in non-stoichiometric (Sr,Ca)TiO3 ceramics. Jpn. J. Appl. Phys. 27, 1162 (1988).

    Article  CAS  Google Scholar 

  12. S. Šturm, A. Recnik, C. Scheu, and M. Ceh: Formation of Ruddlesden-Popper faults and polytype phases in SrO-doped SrTiO3. J. Mater. Res. 15, 2131 (2000).

    Article  Google Scholar 

  13. M. Ceh and D. Kolar: Solubility of CaO in CaTiO3. J. Mater. Sci. 29, 6295 (1994).

    Article  CAS  Google Scholar 

  14. A. Recnik, M. Ceh, and D. Kolar: Polytype induced exaggerated grain growth in ceramics. J. Eur. Ceram. Soc. 21, 2117 (2001).

    Article  CAS  Google Scholar 

  15. S. Šturm, A. Recnik, and M. Ceh: Nucleation and growth of planar faults in SrO-excess SrTiO3. J. Eur. Ceram. Soc. 21, 2141 (2001).

    Article  Google Scholar 

  16. M. Ceh, H. Gu, H. Müllejans, and A. Recnik: Analytical electron microscopy of planar faults in SrO-doped CaTiO3. J. Mater. Res. 12, 2438 (1997).

    Article  CAS  Google Scholar 

  17. T. Suzuki, Y. Nishi, and M. Fujimoto: Ruddlesden-Popper planar faults and nanotwins in heteroepitaxial nonstoichiometric barium titanate thin films.J. Am. Ceram. Soc. 83, 3185 (2000).

    Article  CAS  Google Scholar 

  18. Y. Iwazaki, T. Suzuki, S. Sekiguchi, and M. Fujimoto: Artificial SrTiO3/SrO superlattices by pulsed laser deposition. Jpn. J. Appl. Phys. 38, L1443 (1999).

    Article  Google Scholar 

  19. W. Tian, X.Q. Pan, J.H. Haeni, and D.G. Scholm: Transmissionelectron-microscopy study of n=1-5 Srn+1TinO3n+1 epitaxial thin films. J. Mater. Res. 16, 2013 (2001).

    Article  CAS  Google Scholar 

  20. M. Fujimoto and T. Suzuki: High-resolution transmission electron microscopy and computer simulation of defect structures in electronic perovskite ceramics. J. Ceram. Soc. Jpn. 109, 722 (2001).

    Article  CAS  Google Scholar 

  21. T. Suzuki and M. Fujimoto: First-principles structural stability study of nonstoichiometry-related planar defects in SrTiO3 and BaTiO3.J. Appl. Phys. 89, 5622 (2001).

    Article  CAS  Google Scholar 

  22. S. Myhra, J.C. Rivière, K. Hawkins, and T.J. White: Crystallographic changes in (CaxSr1-x)n+1TinO3n+1 layer perovskites: XPS and XAES investigations. J. Mater. Res. 7, 482 (1992).

    Article  CAS  Google Scholar 

  23. P.D. Battle, M.A. Green, N.S. Laskey, J.E. Millburn, L. Murphy, M.J. Rosseinsky, S.P. Sullivan, and J.F. Vente: Layered Ruddlesden-Popper manganese oxides: Synthesis and cation ordering.Chem. Mater. 9, 552 (1997).

    Article  CAS  Google Scholar 

  24. M. Fujimoto, T. Suzuki, Y. Nishi, and K. Arai: Calcium-ion selective site occupation at Ruddlesden-Popper-type faults and the resultant dielectric properties of A-site-excess strontium calcium titanate ceramics. J. Am. Ceram. Soc. 81, 33 (1998).

    Article  CAS  Google Scholar 

  25. M. Saìnchez-Anduìjar and M.A. Senpariì-Rodriìguez: Cation ordering and electrical properties of the Ruddlesden-Popper Gd2-2xSr1+2XCo2O7 compounds (x=0 and 0.10).Z. Anorg. Allg. Chem. 633, 1890 (2007).

    Article  Google Scholar 

  26. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).

    Google Scholar 

  27. E.J. Kirkland: Advanced Computing in Electron Microscopy (Plenum Press, New York, 1998), pp. 63, 153.

    Book  Google Scholar 

  28. T. Yamazaki, K. Watanabe, A. Reçnik, M. Čeh, M. Kawasaki, and M. Shiojiri: Simulation of atomic-scale high-angle annular dark-field scanning transmission electron microscopy images. J. Electron Microsc. (Tokyo) 49, 753 (2000).

    Article  CAS  Google Scholar 

  29. K. Watanabe, T. Yamazaki, I. Hashimoto, and M. Shiojiri: Atomicresolution annular dark-field STEM image calculations. Phys. Rev. B 64, 115432 (2001).

    Article  Google Scholar 

  30. K. Ishizuka: A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90, 71 (2002).

    Article  CAS  Google Scholar 

  31. J.C.H. Spence and C. Koch: On the measurement of dislocation core periods by nanodiffraction. Philos. Mag. B 81, 1701 (2001).

    Article  CAS  Google Scholar 

  32. J.M. LeBeau, S.D. Findlay, L.J. Allen, and S. Stemmer: Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 100, 206101 (2008).

    Article  Google Scholar 

  33. P.A. Stadelmann: EMS: A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131 (1987).

    Article  CAS  Google Scholar 

  34. C. Koch: Quantitative TEM and STEM simulations. https://www.mf.mpg.de/en/organisation/hsm/koch/stem/index.html (accessed June 18, 2009).

    Google Scholar 

  35. A. Reçnik, G. Mocbus, and S. Šturm: Image-warp: A real-space restoration method for high-resolution STEM images using quantitative HRTEM analysis. Ultramicroscopy 103, 285 (2005).

    Article  Google Scholar 

  36. S. Šturm, C. Koch, M. CC eh, E. Tchernychova, and M. Rühle: Quantitative HRTEM and HAADF-STEM analysis of Ruddlesden- Popper planar faults in nonstroichiometric SrTiO3, edited by M. Ceh, G. Dražic, and S. Fidler (7th MCM Symp. Proc., Portorozc, Slovenia, 2005), p. 59.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sašo Šturm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šturm, S., Shiojiri, M. & Čeh, M. Atomic-scale structural and compositional analyses of Ruddlesden-Popper planar faults in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics. Journal of Materials Research 24, 2596–2604 (2009). https://doi.org/10.1557/jmr.2009.0321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0321

Navigation