Skip to main content
Log in

Preparation and characterization of polypyrrole/TiO2 nanocomposite and its photocatalytic activity under visible light irradiation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A simple and convenient method for preparing visible light response photocatalyst polypyrrole/TiO2 (PPy/TiO2) nanocomposite was developed. The products were characterized by x-ray diffraction, transmission electron microscopy, atomic force microscopy, ultraviolet-visible, and Fourier transform infrared techniques. The results indicated that the nanohybrid was composed of anatase TiO2 and PPy and exhibited an enhanced visible light-capturing ability. Average diameters of TiO2 and PPy/TiO2 were 18 and 35 nm, respectively. The photocatalytic activity of the nanocomposite was evaluated by the degradation of methyl orange under visible light irradiation. In the presence of PPy/TiO2 nanocomposite, the degradation efficiency of methyl orange of 95.54% could be obtained under visible light irradiation within 120 min. The apparent rate constant was 2.19 × 10−2, which was better than that Degussa P25 nano-TiO2. The sensitization mechanism of PPy/TiO2 photocatalyst was discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Phonthammachai, J. Kim, and T.J. White: Synthesis and performance of a photocatalytic titania-hydroxyapatite composite. J. Mater. Res. 23, 2398 (2008).

    Article  CAS  Google Scholar 

  2. J.G. Yu: TiO2 thin film photocatalyst. Rare Met. 23, 289 (2004).

    CAS  Google Scholar 

  3. X.L. Yan, J. He, D.G. Evans, X. Duan, and Y.X. Zhu: Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors. Appl. Catal. B. 55, 243 (2005).

    Article  CAS  Google Scholar 

  4. O. Yavuz, M.K. Ram, M. Aldissi, P. Poddar, and H. Srikanth: Polypyrrole composites for shielding applications. Synth. Met. 151, 211 (2005).

    Article  CAS  Google Scholar 

  5. A.H. Chen, H.Q. Wang, B. Zhao, and X.Y. Li: The preparation of polypyrrole–Fe3O4 nanocomposites by the use of common ion effect. Synth. Met. 139, 411 (2003).

    Article  CAS  Google Scholar 

  6. J. Wang and X.Y. Ni: Photoresponsive polypyrrole-TiO2 nanoparticles film fabricated by a novel surface initiated polymerization. Solid State Commun. 146, 239 (2008).

    Article  CAS  Google Scholar 

  7. Q.Z. Yan, X.T. Su, Y.P. Zhou, and C.C. Ge: Influence of cerium ions on the anatase-rutile phase transition of TiO2 prepared by sol-gel auto-igniting synthesis. Rare Met. 24, 125 (2005).

    CAS  Google Scholar 

  8. A. Sclafani and J.M. Herrmann: Comparison of the photelectronic and photocatalytic activities of various anantase and rutile forms of titania in pure liquid organic phase and in aqueous solution. J. Phys. Chem. 100, 13655 (1996).

    Article  CAS  Google Scholar 

  9. J.A. Langford and A.J.C. Wilson: Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 (1978).

    Article  CAS  Google Scholar 

  10. H.P. Klong and L.E. Alexander: X-ray Diffraction Procedures for Crystalline and Amorphous Solids (Wiley Press, New York, 1954), p. 491.

    Google Scholar 

  11. J.Y. Ouyang and Y.F. Li: Great improvement of polypyrrole films prepared electrochemically from aqueous solutions by adding nonaphenol polyethyleneoxy (10) ether. Polymer (Guildf.) 38, 3997 (1997).

    Article  CAS  Google Scholar 

  12. H.L. Wang and J.E. Fernandez: Blends of polypyrrole and poly (vinyl alcohol). Macromolecules 26, 3336 (1993).

    Article  CAS  Google Scholar 

  13. A. Fujishima, T.N. Rao, and D.A. Tryk: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1 (2000).

    Google Scholar 

  14. M.E. Vaschetto, A.P. Monkman, and M. Springborg: First-principles studies of some conducting polymers: PPP, PPy, PPV, PPyV, and Pani. J. Mol. Struct. Theochem 468, 181 (1999).

    Article  CAS  Google Scholar 

  15. K. Huang, M.X. Wan, Y.Z. Long, Z.J. Chen, and Y. Wei: Multifunctional polypyrrole nanofibers via a functional dopant-introduced process. Synth. Met. 155, 495 (2005).

    Article  CAS  Google Scholar 

  16. G.B. Street and T.A. Skotheim: Handbook of Conducting Polymers: Polypyrrole from Powders to Plastics (Marcel Dekker Inc., New York, 1986), pp. 265–292.

    Google Scholar 

  17. W.J. Bae, K.H. Kim, W.H. Jo, and Y.H. Park: A water-soluble and self-doped conducting polypyrrole graft copolymer. Macromolecules 38, 1044 (2005).

    Article  CAS  Google Scholar 

  18. R. Kostić, D. Raković, S.A. Stepanyan, I.E. Davidova, and L.A. Gribov: Vibrational spectroscopy of polypyrrole, theoretical study. J. Chem. Phys. 102, 3104 (1995).

    Article  Google Scholar 

  19. R.L. Qiu, D.D. Zhang, Y.Q. Mo, L. Song, E. Brewer, X.F. Huang, and Y. Xiong: Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J. Hazard. Mater. 156, 80 (2008).

    Article  CAS  Google Scholar 

  20. J.G. Yu and X.J. Zhao: Effect of surface microstructure of porous TiO2 thin films on photocatalytic decolorization of methyl orange. Chin. J. Catal. 21, 213 (2000).

    CAS  Google Scholar 

  21. R.S. Sonawane, B.B. Kale, and M.K. Dongare: Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol–gel dip coating. Mater. Chem. Phys. 85, 52 (2004).

    Article  CAS  Google Scholar 

  22. A. Piscopo, D. Robert, and J.V. Weber: Comparison between the reactivity of commercial and synthetic TiO2 photocatalysts. J. Photochem. Photobiol. A. 139, 153 (2001).

    Article  Google Scholar 

  23. H. ěšMt’ánková, G. Mailhot, J. Jirkovský, J. Krýsa, and M. Bolte: Mechanistic approach of the combined (iron–TiO2) photocatalytic system for the degradation of pollutants in aqueous solution: An attempt of rationalization. Appl. Catal. B. 57, 257 (2005).

    Article  Google Scholar 

  24. M.K. Nazeeruddin, A. Kay, I. Rodicio, R.H. Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grätzel: Conversion of light to electricity by cis-X2 bis(2,2-bipyridyl-4,4-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN- and SCN-) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 115, 6382 (1993).

    Article  CAS  Google Scholar 

  25. Y.F. Li and R.Y. Qian: On the nature of redox processes in the cyclic voltammetry of polypyrrole nitrate in aqueous solutions. J. Electroanal. Chem. 362, 267 (1993).

    Article  CAS  Google Scholar 

  26. D.R. Park, J.L. Zhang, K. Ikeue, H. Yamashita, and M. Anpo: Photocatalytic oxidation of ethylene to CO2 and H2O on ultrafine powdered TiO2 photocatalysts in the presence of O2 and H2O. J. Catal. 185, 114 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengying Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Chen, M., He, L. et al. Preparation and characterization of polypyrrole/TiO2 nanocomposite and its photocatalytic activity under visible light irradiation. Journal of Materials Research 24, 2547–2554 (2009). https://doi.org/10.1557/jmr.2009.0316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0316

Navigation