Skip to main content
Log in

Synthesis and thermodynamic evaluation of intermetallic Mg-Ni/Mg-Cu nanoscale powders

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanometer-sized intermetallic Mg-Ni and Mg-Cu compound powders were prepared by a physical vapor deposition method (arc discharge) and characterized by means of x-ray diffraction and transmission electron microscopy. Based on an empirical specific heat equation, the effective heat of formation and its temperature dependence were calculated to explain phase formation in nanoscale powders of the binary Mg-Ni and Mg-Cu systems. It is shown that theoretic calculations are in good agreement with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zaluska, L. Zaluski, P. Tessier, and J.O. Ström-Olsen: Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 288, 217 (1999).

    Article  CAS  Google Scholar 

  2. V. Bérubé, G. Radtke, M. Dresselhaus, and G. Chen: Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int. J. Energy Res. 31, 637 (2007).

    Article  Google Scholar 

  3. R.A. Andrievski: Hydrogen in nanostructures. Phys. Usp. 50, 691 (2007).

    Article  CAS  Google Scholar 

  4. S.K. Saha, R.S. Howell, and M.K. Hatalis: Silicidation reactions with Co-Ni bilayers for low thermal budget microelectronic applications. Thin Solid Films 347, 278 (1999).

    Article  CAS  Google Scholar 

  5. T. Chen, H.W. Chang, and M.K. Lei: Prediction of intermetallics formation during metal ion implantation into Al at elevated temperature. Nucl. Instrum. Methods Phys. Res., Sect. B 240, 653 (2005).

    Article  CAS  Google Scholar 

  6. R. Pretorius, R. de Reus, A.M. Vredenberg, and F.W. Saris: Use of the effective heat of formation rule for predicting phase formation sequence in Al-Ni systems. Mater. Lett. 9, 494 (1990).

    Article  CAS  Google Scholar 

  7. R. Pretorius, A.M. Vredenberg, and F.W. Saris: Prediction of phase formation sequence and phase stability in binary. J. Appl. Phys. 70, 3636 (1991).

    Article  CAS  Google Scholar 

  8. R. Pretorius, C.C. Theron, T.K. Marais, and H.A. Ras: Evaluation of anomalies during nickel and titanium silicide formation using the effective heat of formation model. Mater. Chem. Phys. 36, 31 (1993).

    Article  CAS  Google Scholar 

  9. R. Pretorius, T.K. Marais, and C.C. Theron: First nucleation rule for solid-state nucleation in metal-metal thin-film systems. Mater. Sci. Eng., R 10, 1 (1993).

    CAS  Google Scholar 

  10. R. Pretorius and J.W. Mayer: Silicide formation by concentration controlled phase selection. J. Appl. Phys. 81, 2448 (1997).

    Article  CAS  Google Scholar 

  11. J.Y. Shim, J.S. Kwak, E.J. Chi, H.K. Baik, and S.M. Lee: Formation of amorphous and crystalline phases, and phase transition by solid-state reaction in Zr/Si multilayer thin films. Thin Solid Films 269, 102 (1995).

    Article  CAS  Google Scholar 

  12. H.J. Moore, D.L. Olson, and R. Noufi: Use of the effective heat of formation model to determine phase formation sequences of In-Se, Ga-Se, Cu-Se, and Ga-In multilayer thin films. J. Electron. Mater. 27, 1334 (1998).

    Article  CAS  Google Scholar 

  13. A. Laik, K. Bhanumurthy, and G.B. Kale: Intermetallics in the Zr-Al diffusion zone. Intermetallics 12, 69 (2004).

    Article  CAS  Google Scholar 

  14. L. Xu, Y.Y. Cui, Y.L. Hao, and R. Yang: Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples. Mater. Sci. Eng., A 435, 638 (2006).

    Article  Google Scholar 

  15. G.S. Huang and Z.H. Xu: An experiential equation of heat capacity for intermetallic compounds. Chin. Sci. Bull. 23, 1793 (1996).

    Google Scholar 

  16. X.L. Dong, Z.D. Zhang, X.G. Zhao, Y.C. Chuang, S.R. Jin, and W.M. Sun: The preparation and characterization of ultrafine Fe-Ni particles. J. Mater. Res. 14, 398 (1999).

    Article  CAS  Google Scholar 

  17. J.P. Lei, X.L. Dong, X.G. Zhu, M.K. Lei, H. Huang, X.F. Zhang, B. Lu, W.J. Park, and H.S. Chung: Formation and characterization of intermetallic Fe-Sn nanoscale powders synthesized by an arc discharge method. Intermetallics 15, 1589 (2007).

    Article  CAS  Google Scholar 

  18. F. Islam and M. Medraj: The phase equilibria in the Mg–Ni–Ca system. Calphad 29, 289 (2005).

    Article  CAS  Google Scholar 

  19. A.A. Nayeb-Hashemi and J.B. Clark: The Cu-Mg (copper-magnesium) system. Bull. Alloy Phase Diagrams 5, 36 (1984).

    Article  CAS  Google Scholar 

  20. D.R. Gaskell: Introduction to the Thermodynamics of Materials (Taylor & Francis, Washington, 1995), p. 128.

    Google Scholar 

  21. Z. Zhang, X.X. Lü, and Q. Jiang: Finite size effect on melting enthalpy and melting entropy of nanocrystals. Physica B 270, 249 (1999).

    Article  CAS  Google Scholar 

  22. W.H. Qi and M.P. Wang: Size and shape dependent melting temperature of metallic nanoparticles. Mater. Chem. Phys. 88, 280 (2004).

    Article  CAS  Google Scholar 

  23. L.F. Cao, M.P. Wang, D. Xie, Z. Li, and G.Y. Xu: Melting-thermodynamic characteristics of Fe, Co, Ni magnetic nanocrys-tals. Mod. Phys. Lett. B 19, 1253 (2005).

    Article  CAS  Google Scholar 

  24. P. Harmal, I. Kolsis, L. Laczkó, and L. Bartha: Melting and phase transformation of hardmetal powders. Solid State Ionics 141, 157 (2001).

    Article  Google Scholar 

  25. Y.J. Liang and Y.C. Che: Handbook of Thermodynamic Data of Inorganic Substance (Northeastern University Press, Shengyang, 1993) (in Chinese).

    Google Scholar 

  26. O. Kubaschewski and C.B. Alcock: Metallurgical Thermochemistry (Pergamon Press, Oxford, 1979), p. 268.

    Google Scholar 

  27. V.N. Likhachev, G.A. Vinogradov, and M.I. Alymov: Anomalous heat capacity of nanoparticles. Phys. Lett. A 357, 236 (2006).

    Article  CAS  Google Scholar 

  28. B.X. Wang, L.P. Zhou, and X.F. Peng: Surface and size effects on the specific heat capacity of nanoparticles. Int. J. Thermophys. 27, 139 (2006).

    Article  Google Scholar 

  29. T. Turi and U. Erb: Thermal expansion and heat capacity of porosity-free nanocrystalline materials. Mater. Sci. Eng., A 204, 34 (1995).

    Article  Google Scholar 

  30. R. Meyer, J. Laurent, >Lewis S. Prakash, and P. Entel: Vibrational properties of nanoscale materials: From nanoparticles to nanocrys-talline materials. Phys. Rev. B: Condens. Matter 68, 104303 (2003).

    Article  Google Scholar 

  31. M.Y. Tsai, M.H. Chou, and C.R. Kao: Interfacial reaction and the dominant diffusing species in Mg-Ni system. J. Alloys Compd. (2008), doi: 10.1016/j.jallcom.2008.03.124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Long Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, JP., Dong, XL., Zhao, FG. et al. Synthesis and thermodynamic evaluation of intermetallic Mg-Ni/Mg-Cu nanoscale powders. Journal of Materials Research 24, 2503–2510 (2009). https://doi.org/10.1557/jmr.2009.0311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0311

Navigation