Skip to main content

Advertisement

Log in

Processing and microstructure characterization of a novel porous hierarchical TiO2 structure

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report on a novel biocompatible hierarchical TiO2 porous coating on the surface of Ti, processed via anodic oxidation. The coating consists of large (~1–20 mm) pores on the microscale and nanotubes (~50 nm diameter) on the nanoscale. This structure is exciting because of its potential application as a bioactive coating for Ti bone implants. Surface characterization of the coating showed nanotubes of relatively uniform diameter. The interface between TiO2 nanotubes and Ti, studied by transmission electron microscopy, was incoherent. The tubes were also somewhat interconnected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.I. Branemark: Osseointegration and its experimental background. J. Prosthet. Dent. 59, 399 (1983).

    Article  Google Scholar 

  2. P. Li and P. Ducheyne: Quasi-biological apatite film induced by titanium in a simulated body fluid., J. Biomed. Mater. Res. 41, 341 (1998).

    Article  CAS  Google Scholar 

  3. G. Balasundaram and T.J. Webster: A perspective on nanophase materials for orthopedic implant applications., J. Mater. Chem. 16, 3737 (2006).

    Article  CAS  Google Scholar 

  4. R.M. Pilliar: Overview of surface variability of metallic endosseous dental implants: Textured and porous surface-structured designs. Implant Dent. 7, 305 (1998).

    Article  CAS  Google Scholar 

  5. H.M. Kim, F. Miyaji, T. Kokubo, and T. Nakamura: Preparation of bioactive Ti and its alloys via simple chemical surface treatment., J. Biomed. Mater. Res. 32, 409 (1996).

    Article  CAS  Google Scholar 

  6. T.M. Lee, B.C. Wang, Y.C. Yang, E. Chang, and C.Y. Yang: Comparison of plasma-sprayed hydroxyapatite coatings and hydroxyapatite/tricalcium phosphate composite coatings: In vivo study. J. Biomed. Mater. Res. 55, 360 (2001).

    Article  CAS  Google Scholar 

  7. R.M. Pilliar: Porous surfaced metallic-implants for orthopedic applications. J. Biomed. Mater. Res. Appl. Biomat. 21, 1 (1987).

    Article  CAS  Google Scholar 

  8. J.J. Klawitter, J.B. Bagwell, A.M. Weinstein, B.W. Sauer, and J.R. Pruitt: An evaluation of bone growth into porous high density polyethylene., J. Biomed. Mater. Res. 10, 311 (1976).

    Article  CAS  Google Scholar 

  9. T.J. Webster, E. Celaletdin, R.H. Doremus, R.W. Siegel, and R. Bizios: Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21, 1803 (2000).

    Article  CAS  Google Scholar 

  10. C. Yao and T.J. Webster: Anodization: A promising nano-modification technique of titanium implants for orthopedic applications., J. Nanosci. Nanotechnol. 6, 2682 (2006).

    Article  CAS  Google Scholar 

  11. S. Oh, C. Daraio, L.H. Chen, T. Pisanic, R. Finones, and S. Jin: Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J. Biomed. Mater. Res., Part A 78, 97 (2006).

    Article  Google Scholar 

  12. H. Tsuchiya, J.M. Macak, L. Muller, J. Kunze, F. Muller, P. Greil, S. Virtanen, and P. Schmuki: Hydroxyapatite growth on anodic TiO2 nanotubes. J. Biomed. Mater. Res., Part A 77, 534 (2006).

    Article  Google Scholar 

  13. S. Oh and S. Jin: Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Mater. Sci. Eng., C 26, 1301 (2006).

    Article  CAS  Google Scholar 

  14. G.A. Crawford, N. Chawla, K. Das, S. Bose, and A. Bandyopadhyay: Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomater. 3, 359 (2007).

    Article  CAS  Google Scholar 

  15. K.C. Popat, L. Leoni, C.A. Grimes, and T.A. Desai: Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28, 3188 (2007).

    Article  CAS  Google Scholar 

  16. E.E.L. Swan, K.C. Popat, C.A. Grimes, and T.A. Desai: Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J. Biomed. Mater. Res., Part A 72, 288 (2005).

    Article  Google Scholar 

  17. R.D. Bloebaum, D. Beeks, L.D. Dorr, C.G. Savory, J.A. DuPont, and A.A. Hofmann: Complications with hydroxyapatite particulate separation in total hip arthroplasty. Clin. Orthop. Relat. Res. 298, 19 (1994).

    Google Scholar 

  18. C.A. Grimes: Synthesis and application of highly ordered arrays of TiO2 nanotubes., J. Mater. Chem. 17, 1451 (2007).

    Article  CAS  Google Scholar 

  19. K.S. Raja, M. Misra, and K. Paramguru: Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochim. Acta 51, 154 (2005).

    Article  CAS  Google Scholar 

  20. J.M. Macak, H. Tsuchiya, and P. Schmuki: High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 44, 2100 (2005).

    Article  CAS  Google Scholar 

  21. R. Beranek, H. Hildebrand, and P. Schmuki: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 6, B12 (2003).

    Article  CAS  Google Scholar 

  22. Q. Cai, M. Paulose, O.K. Varghese, and C.A. Grimes: The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230 (2005).

    Article  CAS  Google Scholar 

  23. G.K. Mor, O.K. Varghese, M. Paulose, N. Mukherjee, and C.A. Grimes: Fabrication of tapered, conical-shaped titania nanotubes., J. Mater. Res. 18, 2588 (2003).

    Article  CAS  Google Scholar 

  24. K. Yasuda, J.M. Macak, S. Berger, A. Ghicov, and P. Schmuki: Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals., J. Electrochem. Soc. 154, C472 (2007).

    Article  CAS  Google Scholar 

  25. J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki: Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 44, 7463 (2005).

    Article  CAS  Google Scholar 

  26. G.A. Crawford and N. Chawla: Tailoring TiO2 nanotube growth during anodic oxidation by crystallographic orientation of Ti. Scr. Mater. 60, 874 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chawla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, G.A., Chawla, N. & Ringnalda, J. Processing and microstructure characterization of a novel porous hierarchical TiO2 structure. Journal of Materials Research 24, 1683–1687 (2009). https://doi.org/10.1557/jmr.2009.0221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0221

Navigation