Skip to main content
Log in

Effect of SiC, TaB2 and TaSi2 additives on the isothermal oxidation resistance of fully dense zirconium diboride

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The oxidation resistances of ZrB2 containing SiC, TaB2, and TaSi2 additions of various concentrations were studied using isothermal thermogravimetry at 1200, 1400, and 1500 °C, and specimens were further characterized using x-ray diffraction and electron microscopy. Increasing SiC concentration resulted in thinner glassy surface layers as well as thinner ZrO2-rich underlayers deficient in silica. This silica deficiency was argued to occur by a wicking process of interior-formed borosilicate liquid to the initially-formed borosilicate liquid at the surface. Small (3.32 mol%) concentrations of TaB2 additions were more effective at increasing oxidation resistance than equal additions of TaSi2. The benefit of these additives was related to the formation of a zirconium-tantalum boride solid solution during sintering, which during oxidation, fragmented into fine particles of ZrO2 and TaC. These particles resisted wicking of their liquid/glassy borosilicate encapsulation, which increased overall oxidation resistance. With increasing TaB2 or TaSi2 concentration, oxidation resistance degraded, most egregiously with TaB2 additions. In these cases, zirconia dendrites appeared to grow through the glassy layers, providing conduits for oxygen migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Murata and E.B. Whitney: Densification and wear resistance of ceramic systems: III. Tantalum mononitride-zirconium diboride. Am. Ceram. Soc. Bull. 48 (7), 698 (1969).

    CAS  Google Scholar 

  2. Y. Murata: Densification and wear resistance of HfN-ZrB2 compositions. Am. Ceram. Soc. Bull. 52 (3), 255 (1973).

    CAS  Google Scholar 

  3. X. Zhang, P. Hu, S. Meng, J. Han, and B. Wang: Microstructure and mechanical properties of ZrB2-based ceramics. Key Eng. Mater. 312, 287 (2006).

    Article  CAS  Google Scholar 

  4. W.C. Tripp: Effect of an SiC addition on the oxidation of ZrB2. Am. Ceram. Soc. Bull. 52 (8), 1606 (1973).

    Google Scholar 

  5. M.M. Opeka, I.G. Talmy, E.J. Wuchina, J.A. Zaykosi, and S.J. Causey: Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405 (1999).

    Article  CAS  Google Scholar 

  6. A.R. Rezaie, W.G. Fahrenholtz, and G.E. Hilmas: Oxidation of zirconium diboride-silicon carbide at 1500 °C in a low partial pressure of oxygen. J. Am. Ceram. Soc. 89 (10), 3240 (2006).

    Article  CAS  Google Scholar 

  7. A.K. Varshneya: Fundamentals of Inorganic Glasses (Academic Press, New York, 1994).

    Google Scholar 

  8. E.J. Opila and M.C. Halbig: Oxidation of ZrB2-SiC. Elec. Chem. Soc. Proc. 12, 221 (2002).

    Google Scholar 

  9. A. Rezaie, W.G. Fahrenholtz, and G.E. Hilmas: Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1500 °C. J. Eur. Ceram. Soc. 27, 2495 (2007).

    Article  CAS  Google Scholar 

  10. M. Opeka, I. Talmy, and J. Zayk:oski: Oxidation-based materials selection for 2000 °C+ hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 39, 5887 (2004).

    Article  CAS  Google Scholar 

  11. J. Han, P. Hu, X. Zhang, and S. Meng: Oxidation behavior of zirconium diboride-silicon carbide at 1800 °C. Scr. Mater. 57, 825 (2007).

    Article  CAS  Google Scholar 

  12. S.N. Karlsdottir, J.W. Halloran, and A.N. Grundy: Zirconia transport by liquid convection during oxidation of zirconium diboride-silicon carbide. J. Am. Ceram. Soc. 91 (1), 272 (2008).

    Article  CAS  Google Scholar 

  13. I.G. Talmy, J.A. Zaykoski, M.M. Opeka, and S. Dallek: Oxidation of ZrB2 ceramics modified with SiC and group IV–VI transition metal diborides. Elec. Chem. Soc. Proc. 12, 144 (2001).

    Google Scholar 

  14. W. Vogel: Glass Chemistry, 2nd ed. (Springer-Verlag, New York, 1994).

    Book  Google Scholar 

  15. E. Opila, S. Levine, and J. Lorincz: Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions. J. Mater. Sci. 39, 5969 (2004).

    Article  CAS  Google Scholar 

  16. I.G. Talmy, J.A. Zaykoski, M.M. Opeka, and A.H. Smith: Properties of ceramics in the system ZrB2-Ta5Si3. J. Mater. Res. 21 (10), 2593 (2006).

    Article  CAS  Google Scholar 

  17. S. R. Levine, and E. J. Opila: Tantalum addition to zirconium diboride for improved oxidation resistance. NASA/TM–2003–212483.

    Google Scholar 

  18. S.C. Zhang, G.E. Hilmas, and W.G. Fahrenholtz: Improved oxidation resistance of zirconium diboride by tungsten carbide additions. J. Am. Ceram. Soc. 91, 3530 (2008).

    Article  CAS  Google Scholar 

  19. X-H. Zhang, P. Hu, J-C. Han, L. Xu and S-H. Meng: The addition of lanthanum hexaboride to zirconium diboride for improved oxidation resistance. Scr. Mater. 57 (1) 36–39 (2007).

    Google Scholar 

  20. F. Peng and R.F. Speyer: Oxidation resistance of fully dense ZrB2 with SiC, TaB2, and TaSi2 additives. J. Am. Ceram. Soc. 91 (5), 1489 (2008).

    Article  CAS  Google Scholar 

  21. W.E. Lee and W.M. Rainforth: Ceramic Microstructures, Property Control by Processing (Chapman and Hall, London, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Speyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, F., Berta, Y. & Speyer, R.F. Effect of SiC, TaB2 and TaSi2 additives on the isothermal oxidation resistance of fully dense zirconium diboride. Journal of Materials Research 24, 1855–1867 (2009). https://doi.org/10.1557/jmr.2009.0216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0216

Navigation