Skip to main content
Log in

One-step in situ synthesis and characterization of W18O49@carbon coaxial nanocables

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We demonstrate here in situ synthesis of bulk yield W18O49@carbon coaxial nanocables based on an easily controlled chemical vapor deposition process at relatively low temperature (760 °C) using metallic tungsten powder and ethylene (C2H4) as the raw materials. Transmission electron microscope (TEM), energy dispersive x-ray (EDX), and x-ray diffraction (XRD) analyses indicate that the resultant nanostructures are composed of single-crystalline W18O49 nanowires, coaxially covered with amorphous carbon walls. A vapor-solid (VS) mechanism is proposed to interpret the formation of the nanocables. The effect of carbon sources on the nanocable growth was investigated. The results revealed that the introduction of carbon species not only causes the production of W18O49@C nanocable structures, but also obviously modulates growth behaviors and core/shell diameter ratio of the nanocables. The obtained nanocables may find great applications in catalyst systems and optical and electronic nanodevices because of their enhanced surface properties, as well as in high chemical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, F. Qian, J. Xiang, and C.M. Lieber: Nanowire electronic and optoelectronic devices. Mater. Today 9, 18 (2006).

    Article  CAS  Google Scholar 

  2. Z.R. Dai, Z.W. Pan, and Z.L. Wang: Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13, 9 (2003).

    Article  Google Scholar 

  3. Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, and Y.Q. Yan: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).

    Article  CAS  Google Scholar 

  4. M. Law, J. Goldberger, and P.D. Yang: Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83 (2004).

    Article  CAS  Google Scholar 

  5. G.C. Yi, C.R. Wang, and W.I. Park: ZnO nanorods: Synthesis, characterization and applications. Semi. Sci. Tech. 20, S22 (2005).

    Article  CAS  Google Scholar 

  6. A.J. Mieszawska, R. Jalilian, G.U. Sumanasekera, and F.P. Zamborini: The synthesis and fabrication of one-dimensional nano-scale heterojunctions. Small 3, 722 (2007).

    Article  CAS  Google Scholar 

  7. G.C. Liang, J. Xiang, N. Kharche, G. Klimeck, C.M. Lieber, and M. Lundstrom: Performance analysis of a Ge/Si core/shell nano-wire field-effect transistor. Nano Lett. 7, 643 (2007).

    Google Scholar 

  8. C.Y. Kuan, J.M. Chou, I.C. Leu, and M.H. Hon: Self-organized Zn/ZnO core-shelled hierarchical structures prepared by aqueous chemical growth. J. Mater. Res. 23, 1163 (2008).

    Article  CAS  Google Scholar 

  9. S.J. An and G.C. Yi: Near ultraviolet light emitting diode composed of n-GaN/ZnO coaxial nanorod heterostructures on a p-GaN layer. Appl. Phys. Lett. 91, 123109 (2007).

    Article  CAS  Google Scholar 

  10. M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P.D. Yang: ZnO–Al2O3 and ZnO-TiO2 core-shell nano-wire dye-sensitized solar cells. J. Phys. Chem. B 110, 22652 (2006).

    Article  CAS  Google Scholar 

  11. N. Du, H. Zhang, B.D. Chen, J.B. Wu, and D.R. Yang: Low-temperature chemical solution route for ZnO based sulfide coaxial nanocables: General synthesis and gas sensor application. Nanotechnology 18, 115619 (2007).

    Article  CAS  Google Scholar 

  12. O. Kazakova, B. Daly, and J.D. Holmes: Tunable magnetic properties of metal/metal oxide nanoscale coaxial cables. Phys. Rev. B 74, 184413 (2006).

    Article  CAS  Google Scholar 

  13. L. Li, Y.W. Yang, G.H. Li, and L.D. Zhang: Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes. Small 2, 548 (2006).

    Article  CAS  Google Scholar 

  14. Z.Y. Wang, Q.F. Lu, M.G. Kong, and L.D. Zhang: Manipulation of the morphology of semiconductor-based nanostructures from core-shell nanoparticles to nanocables: The case of CdSe/SiO2. Chem. Eur. J. 13, 1463 (2007).

    Article  CAS  Google Scholar 

  15. J.Y. Bae, J.Y. Yoo, and G.C. Yi: Fabrication and photolumines-cent characteristics of ZnO/Mg0.2Zn0.8O coaxial nanorod single quantum well structures. Appl. Phys. Lett. 89, 173114 (2006).

    Article  CAS  Google Scholar 

  16. C.R. Wang, J. Wang, Q. Li, and G.C. Yi: Fabrication and photo-luminescent characteristics of ZnO/Mg0.2Zn0.8O coaxial nanorod single-quantum-well structures. Adv. Funct. Mater. 15, 1471 (2005).

    Article  CAS  Google Scholar 

  17. X.H. Sun, T.K. Sham, R.A. Rosenberg, and G.K. Shenoy: One-dimensional silicon-cadmium selenide heterostructures. J. Phys. Chem. C 111, 8475 (2007).

    Article  CAS  Google Scholar 

  18. R.Y. Li, X.C. Sun, X.R. Zhou, M. Cai, and X.L. Sun: Aligned heterostructures of single-crystalline tin nanowires encapsulated in amorphous carbon nanotubes. J. Phys. Chem. C 111, 9130 (2007).

    Article  CAS  Google Scholar 

  19. C.H. Liang, G.W. Meng, L.D. Zhang, N.F. Shen, and X.Y. Zhang: Carbon nanotubes filled partially or completely with nickel. J. Cryst. Growth 218, 136 (2000).

    Article  CAS  Google Scholar 

  20. B. Deng, A.W. Xu, G.Y. Chen, R.Q. Song, and L.P. Chen: Synthesis of copper-core/carbon-sheath nanocables by a surfactant-assisted hydrothermal reduction/carbonization process. J. Phys. Chem. B 110, 11711 (2006).

    Article  CAS  Google Scholar 

  21. T. Luo, L.Y. Chen, K.Y. Bao, W.C. Yu, and Y.T. Qian: Solvother-mal preparation of amorphous carbon nanotubes and Fe/C coaxial nanocables from sulfur, ferrocene, and benzene. Carbon 44, 2844 (2006).

    Article  CAS  Google Scholar 

  22. H.S. Qian, S.H. Yu, L.B. Luo, J.Y. Gong, L.F. Fei, and X.M. Liu: Synthesis of uniform Te@carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose. Chem. Mater. 18, 2102 (2006).

    Article  CAS  Google Scholar 

  23. L.S. Wang, D.B. Buchholz, Y. Li, J. Li, C.Y. Lee, H.T. Chiu, and R.P.H. Chang: EELS plasmon studies of silver/carbon core/shell nanocables prepared by simple arc discharge. Appl. Phys. A 87, 1 (2007).

    Article  CAS  Google Scholar 

  24. K.F. Huo, X.M. Zhang, L.S. Hu, X.J. Sun, J.J. Fu, and P.K. Chu: One-step growth and field-emission properties of quasialigned TiO2 nanowire/carbon nanocone core-shell nanostructure arrays on Ti substrates. Appl. Phys. Lett. 93, 013105 (2008).

    Article  CAS  Google Scholar 

  25. H.Y. Kim, S.Y. Bae, N.S. Kim, and J. Park: Fabrication of SiC-C coaxial nanocables: Thickness control of C outer layers. Chem. Commun. 2634 (2003).

    Google Scholar 

  26. C.Y. Zhi, D.Y. Zhong, and E.G. Wang: GaN-filled carbon nanotubes: Synthesis and photoluminescence. Chem. Phys. Lett. 381, 715 (2003).

    Article  CAS  Google Scholar 

  27. J.H. Zhan, Y. Bando, J.Q. Hu, Y.B. Li, and D. Golberg: Synthesis and field-emission properties of Ga2O3–C nanocables. Chem. Mater. 16, 5158 (2004).

    Article  CAS  Google Scholar 

  28. L.W. Yin, Y. Bando, Y.C. Zhu, and M.S. Li: Controlled carbon nanotube sheathing on ultrafine InP nanowires. Appl. Phys. Lett. 84, 5314 (2004).

    Article  CAS  Google Scholar 

  29. S.Y. Bae, H.W. Seo, H.C. Choi, D.S. Han, and J. Park: Singleand double-shelled coaxial nanocables of GaP with silicon oxide and carbon. J. Phys. Chem. B 109, 8496 (2005).

    Article  CAS  Google Scholar 

  30. X.P. Shen, Z.Y. Jiang, C.L. Gao, Z. Xu, Z.X. Xie, and L.S. Zheng: Controlled carbon nanotube sheathing on ultrafine InP nanowires. J. Mater. Chem. 17, 1326 (2007).

    Article  CAS  Google Scholar 

  31. E. Sutter, P. Sutter, R. Calarco, T. Stoica, and R. Meijers: Assembly of ordered carbon shells on GaN nanowires. Appl. Phys. Lett. 90, 093118 (2007).

    Article  CAS  Google Scholar 

  32. M.S. Saha, R.Y. Li, M. Cai, and X.L. Sun: Nanowire-based 3-D hierarchical core/shell heterostructured electrodes for high performance PEM fuel cells. J. Power Sources 185, 1079 (2008).

    Article  CAS  Google Scholar 

  33. K. Viswanathan and K. Brandt: Crystal-structure and charge carrier concentration of W18O49. J. Solid State Chem. 36, 45 (1981).

    Article  CAS  Google Scholar 

  34. Y.S. Kim, S.C. Ha, K. Kim, H. Yang, S.Y. Choi, Y.T. Kim, J.T. Park, C.H. Lee, J. Choi, J. Paek, and K. Lee: Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Appl. Phys. Lett. 86, 213105 (2005).

    Article  CAS  Google Scholar 

  35. J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti, and M. Niederberger: Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew. Chem. Int. Ed. 45, 261 (2006).

    Article  CAS  Google Scholar 

  36. Y.B. Li, Y. Bando, and D. Golberg: Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 15, 1294 (2003).

    Article  CAS  Google Scholar 

  37. S. Jeon and K. Yong: Synthesis and characterization of tungsten oxide nanorods from chemical vapor deposition-grown tungsten film by low-temperature thermal annealing. J. Mater. Res. 23, 1320 (2008).

    Article  CAS  Google Scholar 

  38. K.Q. Hong, M.H. Xie, R. Hu, and H.S. Wu: Synthesis of tungsten oxide comblike nanostructures. J. Mater. Res. 23, 2657 (2008).

    Article  CAS  Google Scholar 

  39. J. Polleux, N. Pinna, M. Antonietti, and M. Niederberger: Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J. Am. Chem. Soc. 127, 15595 (2005).

    Article  CAS  Google Scholar 

  40. G.Z. Shen, Y. Bando, D. Golberg, and C.W. Zhou: Electron-beam-induced synthesis and characterization of W18O49 nanowires. J. Phys. Chem. C 112, 5856 (2008).

    Article  CAS  Google Scholar 

  41. A. Kawashima, S. Nomura, H. Toyota, T. Takemori, S. Mukasa, and T. Maehara: A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires. Nanotechnology 18, 495603 (2007).

    Article  CAS  Google Scholar 

  42. H.H. Hwu and J.G. Chen: Substrate-dependent reaction pathways of ethylene on clean and carbide-modified W(110) and W(111). J. Phys. Chem. B 107, 11467 (2003).

    Article  CAS  Google Scholar 

  43. G. Gu, B. Zheng, W.Q. Han, S. Roth, and J. Liu: Tungsten oxide nanowires on tungsten substrates. Nano Lett. 2, 849 (2002).

    Article  CAS  Google Scholar 

  44. A.M. Morales and C.M. Lieber: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).

    Article  CAS  Google Scholar 

  45. S.J. Kwon: Theoretical analysis of non-catalytic growth of nanorods on a substrate. J. Phys. Chem. B 110, 3876 (2006).

    Article  CAS  Google Scholar 

  46. V.K. Sarin: Morphological changes occurring during reduction of WO3. J. Mater. Sci. 10, 593 (1975).

    Article  CAS  Google Scholar 

  47. K.Q. Hong, W.C. Yiu, H.S. Wu, J. Gao, and M.H. Xie: A simple method for growing high quantity tungsten-oxide nanoribbons under moist conditions. Nanotechnology 16, 1608 (2005).

    Article  CAS  Google Scholar 

  48. Y.Z. Jin, Y.Q. Zhu, R.L.D. Whitby, N. Yao, R.Z. Ma, P.C.P. Watts, H.W. Kroto, and D.R.M. Walton: Simple approaches to quality large-scale tungsten oxide nanoneedles. J. Phys. Chem. B 108, 15572 (2004).

    Article  CAS  Google Scholar 

  49. J. Pfeifer, E. Badaljan, P. Tekula-Buxbaum, T. Kovacs, O. Geszti, A.L. Toth, and H.J. Lunk: Growth and morphology of W18O49 crystals produced by microwave decomposition of ammonium paratungstate. J. Cryst. Growth 169, 727 (1996).

    Article  CAS  Google Scholar 

  50. A. Rothschild, J. Sloan, and R. Tenne: Growth of WS2 nanotubes phases. J. Am. Chem. Soc. 122, 5169 (2000).

    Article  CAS  Google Scholar 

  51. N.A.S.A. Thermo Build: https://www.cea.grc.nasa.gov.

  52. C.H. Ye, X.S. Fang, Y.F. Hao, X.M. Teng, and L.D. Zhang: Zinc oxide nanostructures: Morphology derivation and evolution. J. Phys. Chem. B 109, 19758 (2005).

    Article  CAS  Google Scholar 

  53. M. Bechelany, A. Brioude, P. Stadelmann, G. Ferro, D. Cornu, and P. Miele: Very long SiC-based coaxial nanocables with tunable chemical composition. Adv. Funct. Mater. 17, 3251 (2007).

    Article  CAS  Google Scholar 

  54. T.K. Zhao, Y.N. Liu, and J.W. Zhu: Temperature and catalyst effects on the production of amorphous carbon nanotubes by a modified arc discharge. Carbon 43, 2907 (2005).

    Article  CAS  Google Scholar 

  55. N.Q. Zhao, C.N. He, X.W. Du, C.S. Shi, J.J. Li, and L. Cui: Amorphous carbon nanotubes fabricated by low-temperature chemical vapor deposition. Carbon 44, 1859 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Zhang, Y., Li, R. et al. One-step in situ synthesis and characterization of W18O49@carbon coaxial nanocables. Journal of Materials Research 24, 1833–1841 (2009). https://doi.org/10.1557/jmr.2009.0214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0214

Navigation