Skip to main content
Log in

Augmented instrumented indentation using nonlinear electrical contact current-voltage curves

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An electrical technique was recently developed to measure the in situ contact area continuously during instrumented indentation by simultaneously monitoring electrical contact response between a conductive indenter tip and a conductive sample. This technique has the potential to overcome limitations of the Oliver-Pharr method caused by the lack of a direct contact area measurement. However, the electrical contact current-voltage (I-V) curves measured from the technique were nonlinear, posing a significant challenge to inferring accurate in situ contact areas. To overcome this challenge and extend the electrical technique to more applications, various I-V curve analysis methods were investigated for their abilities to infer in situ contact area and hardness. Annealed Cu was indented using both linear and exponential loading tests. When analyzing the resulting data, the feasibility of each method was evaluated and the optimal methods to calculate the in situ contact area and hardness were determined. It was found that a simple summation of the absolute values of area under I-V curves or the area under I-V curves at positive voltages yielded the most robust area measure, whereas error in the inferred contact area was systematic and primarily from velocity dependence of the I-V response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bhushan and X. Li: Nanomechanical characterisation of solid surfaces and thin films. Int. Mater. Rev. 48, 125 (2003).

    Article  CAS  Google Scholar 

  2. S.J. Bull: Nanoindentation of coatings. J. Phys. D: Appl. Phys. 38, R393 (2005).

    Article  CAS  Google Scholar 

  3. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, and Y.L. Shen: Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55, 4015 (2007).

    Article  CAS  Google Scholar 

  4. G.M. Pharr and W.C. Oliver: Measurement of thin film mechanical properties using nanoindentation. MRS Bull. 17, 28 (1992).

    Article  Google Scholar 

  5. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  6. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  7. A. Bolshakov and G.M. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth-sensing indentation techniques. J. Mater. Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  8. Y.T. Cheng and C.M. Cheng: Effects of ‘sinking in’ and ‘piling up’ on estimating the contact area under load in indentation. Philos. Mag. Lett. 78, 115 (1998).

    Article  CAS  Google Scholar 

  9. T.Y. Tsui and G.M. Pharr: Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J. Mater. Res. 14, 292 (1999).

    Article  CAS  Google Scholar 

  10. R. Saha and W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).

    Article  CAS  Google Scholar 

  11. S.M. Han, R. Saha, and W.D. Nix: Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation. Acta Mater. 54, 1571 (2006).

    Article  CAS  Google Scholar 

  12. L. Fang, C.L. Muhlstein, J. Collins, A. Romasco, and L.H. Friedman: Continuous electrical in situ contact area measurement during instrumented indentation. J. Mater. Res. 23, 2480 (2008).

    Article  CAS  Google Scholar 

  13. D.A. Neamen: Semiconductor Physics and Devices—Basic Principles (McGraw-Hill Publishing Company, 2003).

    Google Scholar 

  14. E.H. Rhoderick and R.H. Williams: Metal-Semiconductor Contacts (Clarendon Press, 1988).

    Google Scholar 

  15. R. Holm and E. Holm: Electrical Contacts: Theory and Application (Springer-Verlag, New-York, 1967).

    Book  Google Scholar 

  16. Y.V. Sharvin: A possible method for studying Fermi surfaces. Soviet Physics JETR 21, 655 (1965).

    Google Scholar 

  17. G. Wexler: The size effect and the non-local Boltzmann transport equation in orifice and disk geometry. Proc. Phys. Soc. 89, 927 (1966).

    Article  CAS  Google Scholar 

  18. I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  19. X. Chen and J. Vlassak: Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 16, 2974 (2001).

    Article  CAS  Google Scholar 

  20. V.R. Howes, H.J. Goldsmid, and C.A. Baird: Hardness measurement at constant depth using an indenter partially coated with a conducting film. J. Phys. E: Sci. Instrum. 20, 1507 (1987).

    Article  Google Scholar 

  21. L. Wieczorek, V.R. Howes, and H.J. Goldsmid: Electrical contact resistance and its relationship to hardness. J. Mater. Sci. 21, 1423 (1986).

    Article  CAS  Google Scholar 

  22. H.J. Goldsmid, V.R. Howes, and C.A. Baird: Measurement of hardness using a semiconductor diamond indentor. J. Mater. Sci. Lett. 6, 1043 (1987).

    Article  CAS  Google Scholar 

  23. S. Ruffell, J.E. Bradby, J.S. Williams, and O.L. Warren: An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon. J. Mater. Res. 22, 578 (2007).

    Article  CAS  Google Scholar 

  24. Y.Y. Lim and M.M. Chaudhri: The effect of the indenter load on the nanohardness of ductile materials: An experimental study on polycrystalline work-hardened and annealed oxygen-free copper. Philos. Mag. A 79, 2979 (1999).

    Article  CAS  Google Scholar 

  25. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery: Numerical Recipes in Fortran: The Art of Scientific Computing (Cambridge University Press, 1992).

    Google Scholar 

  26. A.C. Fischer-Cripps: Nanoindentation (Springer-Verlag, New York, 2004).

    Book  Google Scholar 

  27. M.A. Lampert and P. Mark: Current Injections in Solids (Academic Press, New York and London, 1970).

    Google Scholar 

  28. J.R. Taylor: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, 1997).

    Google Scholar 

  29. M. Atkinson: Further analysis of the size effect in indentation hardness tests of some metals. J. Mater. Res. 10, 2908 (1995).

    Article  CAS  Google Scholar 

  30. E. Crinon and J.T. Evans: The effect of surface roughness, oxide film thickness and interfacial sliding on the electrical contact resistance of aluminum. Mater. Sci. Eng., A 242, 121 (1998).

    Article  Google Scholar 

  31. E. Barthel: Adhesive elastic contacts: JKR and more. J. Phys. D: Appl. Phys. 41, 1 (2008).

    Article  Google Scholar 

  32. R.S. Timsit: Electrical conduction through small contact spots. IEEE Trans. Compon. Packag. Technol. 29, 727 (2006).

    Article  CAS  Google Scholar 

  33. A. Mikrajuddin, F.G. Shi, H.K. Kim, and K. Okuyama: Size-dependent electrical constriction resistance for contacts of arbitrary size: From Sharvin to Holm limits. Mater. Sci. Semicond. Process. 2, 321 (1999).

    Article  CAS  Google Scholar 

  34. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence H. Friedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, L., Muhlstein, C.L., Romasco, A.L. et al. Augmented instrumented indentation using nonlinear electrical contact current-voltage curves. Journal of Materials Research 24, 1820–1832 (2009). https://doi.org/10.1557/jmr.2009.0213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0213

Navigation