Skip to main content
Log in

Extracting yield strength and strain-hardening exponent of metals with a double-angle indenter

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A double-angle indenter model is proposed to determine the representative strain in the indentation process, and a new method is then developed aiming at the extraction of the yield strength and strain-hardening exponent from the surface layer of metals, because surface properties, especially in a small region, may differ from bulk ones and are sometimes closer to service properties such as fatigue strength, wear, and corrosion resistance. First, the isotropic metal was analyzed, the elastic modulus of which was fixed at 128 GPa, the yield strength was 50 to 200 MPa, and the strain-hardening exponent was 0.1 to 0.5. By introducing the yield strain to substitute the yield strength in the calculation, it was proved that the model can cover the majority of metals because the introduced weight parameter λ is independent of the yield strength and the elastic modulus, although it depends on the strain-hardening exponent to some extent. For the determination of yield strain εY (or yield strength Y), the precision is better for low C/E and low n, whereas for the determination of strain-hardening exponent n, the precision is better for high C/E and low εY. By using the double-angle indenter, the material constitutive relationship at the surface can be evaluated from just one indentation without any other measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Xiuying, L. Jiabao, K. Zengqiao, and H. Jiawen: Surface yielding of metals by x-ray diffraction. J. Mar. Sci. Technol. 9, 205 (1993).

    Google Scholar 

  2. W. Hongwei, M. Jinsheng, N. Junma, and H. Jiawen: Surface yield strength versus fatigue limit for steels. Acta Metall. Sinica 27, A365 (1991).

    Google Scholar 

  3. H. Jiawen: Surface strength and its effect on fatigue transactions of metal. Heat Treat. 61, 183 (1997).

    Google Scholar 

  4. D.J. Ma, K.W. Xu, and J.W. He: Numerical simulation for determining the mechanical properties of thin metal films using depth-sensing indentation technique. Thin Solid Films 323, 183 (1998).

    Article  CAS  Google Scholar 

  5. D.J. Ma, K.W. Xu, and J.W. He: Evaluation of the mechanical properties of thin metal films. Surf. Coat. Technol. 119, 128 (1999).

    Article  Google Scholar 

  6. J.S. Field and M.V. Swain: Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 (1995).

    Article  CAS  Google Scholar 

  7. B. Taljat, T. Zacharia, and F. Kosel: New analytical procedure to determine stress-strain curve from spherical indentation data. Int. J. Solids Struct. 35, 4411 (1998).

    Article  Google Scholar 

  8. S. Kucharski and Z. Mroz: Identification of plastic hardening parameters of metals from spherical indentation tests. Mater. Sci. Eng., A 65, 318 (2001).

    Google Scholar 

  9. A. Nayebi, R. Elabdi, O. Bartier, and G. Mauvoisin: New procedure to determine steel mechanical parameters from the spherical indentation technique. Mech. Mater. 34, 243 (2002).

    Article  Google Scholar 

  10. N. Huber and C. Tsakmakis: Determination of constitutive properties from spherical indentation data using neural networks. Part I: The case of pure kinematic hardening in plasticity laws. J. Mech. Phys. Solids 47, 1569 (1999).

    Article  Google Scholar 

  11. N. Huber and C. Tsakmakis: Determination of constitutive properties from spherical indentation data using neural networks. Part II: Plasticity with nonlinear isotropic and kinematic hardening. J. Mech. Phys. Solids 47, 1589 (1999).

    Article  Google Scholar 

  12. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, and J.L. Hay: On the measurement of stress-strain curves by spherical indentation. Thin Solid Films 398, 331 (2001).

    Article  Google Scholar 

  13. Y.P. Cao and J. Lu: A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Mater. 52, 4023 (2004).

    Article  CAS  Google Scholar 

  14. M.M. Chaudhri: Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper. Acta Mater. 46, 3047 (1998).

    Article  CAS  Google Scholar 

  15. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  16. A. Constantinescu and N. Tardieu: On the identification of elastoviscoplastic constitutive laws from indentation tests. Inverse Prob. Eng. 9, 19 (2001).

    Article  Google Scholar 

  17. J.L. Bucaille, E. Felder, and G. Hochstetter: Identification of the viscoplastic behavior of a polycarbonate based on experiments and numerical modeling of the nano-indentation test. J. Math. Sci. 7, 3999 (2002).

    Article  Google Scholar 

  18. Y.T. Cheng and C.M. Cheng: Can stress-strain relationships be obtained from indentation curves using conical and pyramidal indenters? J. Mater. Res. 14, 3493 (1999).

    Article  CAS  Google Scholar 

  19. Y.T. Cheng and C.M. Cheng: Scaling relationships in conical indentation of elastic perfectly plastic solids. Int. J. Solids Struct. 36, 1231 (1999).

    Article  Google Scholar 

  20. Y.T. Cheng and C.M. Cheng: Scaling dimensional analysis, and indentation measurements. Mater. Sci. Eng. 44, 91 (2004).

    Article  Google Scholar 

  21. O. Casals and J. Alcalá: The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments. Acta Mater. 53, 3545 (2005).

    Article  CAS  Google Scholar 

  22. O. Casals and J. Alcalá: Analytical and experimental resolutions in the duality of mechanical property extractions from instrumented indentation experiments: Comments on “On determination of material parameters from loading and unloading responses in nanoindentation with a single sharp indenter” by L. Wang and S.I. Rokhlin [J. Mater. Res. 21, 995 (2006)]. J. Mater. Res. 22(5), 1138 (2007).

    Article  Google Scholar 

  23. J.L. Bucaille, S. Stauss, E. Felder, and J. Michler: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663 (2003).

    Article  CAS  Google Scholar 

  24. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  25. T.W. Capehart and Y.T. Cheng: Determining constitutive models from conical indentation sensitivity analysis. J. Mater. Res. 18, 827 (2003).

    Article  CAS  Google Scholar 

  26. K. Zeng and C.H. Chiu: An analysis of load-penetration curves from instrumented indentation. Acta Mater. 49, 3539 (2001).

    Article  CAS  Google Scholar 

  27. K. Tunvisut, N.P. O’Dowd, and E.P. Busso: Use of scaling functions to determine mechanical properties of thin coatings from microindentation tests. Int. J. Solids Struct. 38, 335 (2001).

    Article  Google Scholar 

  28. K. Tunvisut, E.P. Busso, N.P. O’Dowd, and H.P. Brantner: Determination of the mechanical properties of metallic thin films and substrates from indentation tests. Philos. Mag. A 82, 2013 (2002).

    Article  CAS  Google Scholar 

  29. M. Mata and J. Alcala: Mechanical property evaluation through sharp indentations in elastoplastic and fully plastic contact regimes., J. Mater. Res. 18, 1705 (2003).

    Article  CAS  Google Scholar 

  30. M. Futakawa, T. Wakui, Y. Tanabe, and I. Ioka: Identification of the constitutive equation by the indentation technique using plural indenters with different apex angles. J. Mater. Res. 16, 2283 (2001).

    Article  CAS  Google Scholar 

  31. N. Chollacoop, M. Dao, and S. Suresh: Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713 (2003).

    Article  CAS  Google Scholar 

  32. A. DiCarlo, H.T.Y. Yang, and S. Chandrasekar: Semi-inverse method for predicting stress-strain relationship from cone indentations. J. Mater. Res. 18, 2068 (2003).

    Article  CAS  Google Scholar 

  33. L. Hongzhi and T.A. Venkatesh: Determination of the elastic and plastic properties of materials through instrumented indentation with reduced sensitivity. Acta Mater. 55, 2025 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewei Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, G., Wang, F. & Xu, K. Extracting yield strength and strain-hardening exponent of metals with a double-angle indenter. Journal of Materials Research 24, 1674–1682 (2009). https://doi.org/10.1557/jmr.2009.0203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0203

Navigation