Skip to main content
Log in

Glass-forming region of the Ni-Nb-Ta ternary metal system determined directly from n-body potential through molecular dynamics simulations

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An n-body Ni-Nb-Ta potential is constructed to conduct molecular dynamics simulations using 129 solid solution models with various compositions. Comparing the relative stability of solid solutions versus their disordered counterparts, simulations determine two critical solid-solubility lines, which define a region in the composition triangle. If an alloy is located inside the defined region, a disordered state is energetically favored; if it is located outside, a crystalline solid solution is preserved. The region is therefore named as the metallic glass-forming region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Lee, J.H. Kim, J.S. Park, J.C. Kim, W.T. Kim, and D.H. Kim: Fabrication of Ni–Nb–Ta metallic glass reinforced Al-based alloy matrix composites by infiltration casting process. Scr. Mater. 50, 1367 (2004).

    Article  CAS  Google Scholar 

  2. M. Lee, D. Bae, W. Kim, and D. Kim: Ni-based refractory bulk amorphous alloys with high thermal stability. Mater. Trans. 44, 2084 (2003).

    Article  CAS  Google Scholar 

  3. K.D. Kim, K.B. Kim, Y.C. Kim, D.Y. Lee, and D.H. Kim: Hydrogen permeation and surface characteristics of Pd-coated Ni–Nb–Ta amorphous alloy membrane. Mater. Sci. Forum 510–511, 810 (2006).

    Article  Google Scholar 

  4. J.H. Li, X.D. Dai, S.H. Liang, K.P. Tai, Y. Kong, and B.X. Liu: Interatomic potentials of the binary transition metal systems and some applications in materials physics. Phys. Rep. 455, 1 (2008).

    Article  CAS  Google Scholar 

  5. X.D. Dai, J.H. Li, H.B. Guo, and B.X. Liu: Structural stability and characteristics of the metastable Ag–W phases studied by ab initio and molecular dynamics calculations. J. Appl. Phys. 101, 063512 (2007).

    Article  Google Scholar 

  6. S.H. Liang, J.H. Li, and B.X. Liu: Solid-state amorphization of an immiscible Nb–Zr system simulated by molecular dynamics. Comput. Mater. Sci. 42, 550 (2008).

    Article  CAS  Google Scholar 

  7. X.D. Dai, Y. Kong, and J.H. Li: Long-range empirical potential model: Application to fcc transition metals and alloys. Phys. Rev. B 75, 104101 (2007).

    Article  Google Scholar 

  8. X.D. Dai, J.H. Li, and Y. Kong: Long-range empirical potential for the bcc structured transition metals. Phys. Rev. B 75, 052102 (2007).

    Article  Google Scholar 

  9. G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  10. G. Kresse and J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  11. P. Villars and L.D. Calvert: Pearson’s Handbook of Crystallo-graphic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1997).

    Google Scholar 

  12. M. Parrinello and A. Rahman: Polymorphic transitions in single crystals: A new molecular dynamics method., J. Appl. Phys. 52, 7182 (1981).

    Article  CAS  Google Scholar 

  13. M.P. Allen and D.J. Tildesley: Computer Simulation of Liquids (Oxford University Press, London, 1987).

    Google Scholar 

  14. D. Frenkel and B. Smit: Understanding Molecular Simulations: From Algorithms to Application (Academic Press, San Diego, 2002).

    Google Scholar 

  15. L.J. Gallego, J.A. Somaza, J.A. Alonso, and J.M. Lopez: Prediction of the glass formation range of transition metal alloys. J. Phys. F: Met. Phys. 18, 2149 (1988).

    Article  CAS  Google Scholar 

  16. K.P. Tai, L.T. Wang, and B.X. Liu: Distinct atomic structures of the Ni–Nb metallic glasses formed by ion beam mixing. J. Appl. Phys. 102, 124902 (2007).

    Article  Google Scholar 

  17. W.S. Lai, Q. Zhang, and B.X. Liu: Solubility criterion for sequential disordering in metal-metal multilayers upon solid-state reaction. Philos. Mag. Lett. 81, 45 (2001).

    Article  CAS  Google Scholar 

  18. B.X. Liu and Z.J. Zhang: Formation of nonequilibrium solid phases by ion irradiation in the Ni-Ta system and their thermodynamic and growth-kinetics interpretations. Phys. Rev. B 49, 12519 (1994).

    Article  CAS  Google Scholar 

  19. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen: Cohesion in Metals: Transition Metal Alloys (Amsterdam, North-Holland, 1988).

    Google Scholar 

  20. T. Egami: Atomistic mechanism of bulk metallic glass formation. J. Non-Cryst. Solids 317, 30 (2003).

    Article  CAS  Google Scholar 

  21. B.X. Liu, W.L. Johnson, M-A. Nicolet, and S.S. Lau: Structural difference rule for amorphous alloy formation by ion mixing. Appl. Phys. Lett. 42, 45 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. X. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, Y., Li, J.H., Che, X.L. et al. Glass-forming region of the Ni-Nb-Ta ternary metal system determined directly from n-body potential through molecular dynamics simulations. Journal of Materials Research 24, 1815–1819 (2009). https://doi.org/10.1557/jmr.2009.0198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0198

Navigation