Skip to main content
Log in

Modified method developed for contact-induced adhesion in indentation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A modified method for contact-induced adhesion on the elastic deformation contact between a rigid spherical indenter and a polydimethylsiloxane (PDMS) specimen is proposed in the present study. Adhesion due to van der Waals interactions was found to be minimal during loading processes. During the unloading process, the experimental load-displacement data revealed two-stage phenomena. The successive advancing contacts between the specimen and the indenter were considered to induce interfacial adhesion and resulted in elastic tension outside the Hertzian contact radius. A real-coded genetic algorithm (RGA) was applied to evaluate how adhesion energy varied with penetration depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhou, C-S. Yang, J-A. Chen, G-F. Ding, W. Ding, L. Wang, M-J. Wang, Y-M. Zhang, and T-H. Zhang: Measurement of Young’s modulus and residual stress of copper film electroplated on silicon wafer. Thin Solid Films 460, 175 (2004).

    Article  CAS  Google Scholar 

  2. J. Zhou and K. Komvopoulos: Surface and interface viscoelastic behaviors of thin polymer films investigated by nanoindentation. J. Appl. Phys. 100, 114329 (2006).

    Article  CAS  Google Scholar 

  3. P. Delobelle, O. Guillon, E. Fribourg-Blanc, C. Soyer, E. Cattan, and D. Remiens: True Young modulus of Pb(Zr,Ti)O-3 films measured by nanoindentation. Appl. Phys. Lett. 85, 5185 (2004).

    Article  CAS  Google Scholar 

  4. D. Tranchida, S. Piccarolo, J. Loos, and A. Alexeev: Accurately evaluating Young’s modulus of polymers through nanoindenta-tions: A phenomenological correction factor to the Oliver and Pharr procedure. Appl. Phys. Lett. 89, 171905 (2006).

    Article  CAS  Google Scholar 

  5. J.C. Lotters, W. Olthuis, P.H. Veltink, and P. Bergveld: The mechanical properties of the rubber elastic polymer polydi-methylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145 (1997).

    Article  CAS  Google Scholar 

  6. Y-P. Zhao, X. Shi, and W.J. Li: Effect of work of adhesion on nanoindentation. Rev. Adv. Mater. Sci. 5, 348 (2003).

    Google Scholar 

  7. V.V. Pokropivny, V.V. Skorokhod, and A.V. Pokropivny: Adhesive phenomena at the α-Fe interface during nanoindentation, stretch and shock. Modell. Simul. Mater. Sci. Eng. 5, 579 (1997).

    Article  CAS  Google Scholar 

  8. K.L. Johnson, K. Kendall, and A.D. Roberts: Surface energy and contact of elastic solids. Proc. R. Soc. London, Ser. A 324, 301 (1971).

    CAS  Google Scholar 

  9. B.V. Derjaguin, V.M. Muller, and Y.P. Toporov: Effect of contact deformations on adhesion of particles., J.Colloid Interface Sci. 53, 314 (1975).

    Article  CAS  Google Scholar 

  10. D. Tabor: Surface forces and surface interactions., J. Colloid Interface Sci. 58, 2 (1977).

    Article  CAS  Google Scholar 

  11. D. Maugis: Adhesion of spheres-The JKR-DMT transition using a Dugdale model., J. Colloid Interface Sci. 150, 243 (1992).

    Article  CAS  Google Scholar 

  12. H. Hertz: On the contact of elastic solids. J. Reine Angew. Math. 92, 156 (1881).

    Google Scholar 

  13. O. Piétrement and M. Troyon: General equations describing elastic indentation depth and normal contact stiffness versus load. J. Colloid Interface Sci. 226, 166 (2000).

    Article  Google Scholar 

  14. E. Barthel: On the description of the adhesive contact of spheres with arbitrary interaction potentials., J. Colloid Interface Sci. 200, 7 (1998).

    Article  CAS  Google Scholar 

  15. H.R. Brown: Effects of chain pull-out on adhesion of elastomers. Macromolecules 26, 1666 (1993).

    Article  CAS  Google Scholar 

  16. E. Raphael and P.G. DeGennes: Rubber-rubber adhesion with connector molecules., J. Phys. Chem. 96, 4002 (1992).

    Article  CAS  Google Scholar 

  17. A. Ghatak, K. Vorvolakos, H. She, D.L. Malotky, and M.K. Chaudhury: Interfacial rate processes in adhesion and friction. J. Phys. Chem. B 104, 4018 (2000).

    Article  CAS  Google Scholar 

  18. K. Kendall: Peel adhesion of solid films: Surface and bulk effects. J. Adhes. 5, 179 (1973).

    Article  CAS  Google Scholar 

  19. S.J. Clarson and J.A. Semlyen: Siloxane Polymers (Prentice-Hall, Englewood Cliffs, NJ, 1993).

    Google Scholar 

  20. J.C. Lotters, W. Olthuis, P.H. Veltink, and P. Bergveld: Polydi-methylsiloxane as an elastic material applied in a capacitive accelerometer. J. Micromech. Microeng. 6, 52 (1996).

    Article  CAS  Google Scholar 

  21. K.G. Sharp, G.S. Blackman, N.J. Glassmaker, A. Jagota, and C.Y. Hui: Effect of stamp deformation on the quality of microcontact printing: Theory and experiment. Langmuir 20, 6430 (2004).

    Article  CAS  Google Scholar 

  22. G. Gillies and C.A. Prestidge: Interaction forces, deformation and nano-rheology of emulsion droplets as determined by colloid probe AFM. Adv. Colloid Interface Sci. 108–109, 197 (2004).

    Article  CAS  Google Scholar 

  23. L. Sirghi and F. Rossi: Adhesion and elasticity in nanoscale indentation. Appl. Phys. Lett. 89, 243118 (2006).

    Article  CAS  Google Scholar 

  24. S. Gupta, F. Carrillo, C. Li, L. Pruitt, and C. Puttlitz: Adhesive forces significantly affect elastic modulus determination of soft polymeric materials in nanoindentation. Mater. Lett. 61, 448 (2007).

    Article  CAS  Google Scholar 

  25. Y.Y. Lim and M.M. Chaudhri: Indentation of elastic solids with a rigid Vickers pyramidal indenter. Mech. Mater. 38, 1213 (2006).

    Article  Google Scholar 

  26. Y. Cao, D. Yang, and W. Soboyejoy: Nanoindentation method for determining the initial contact and adhesion characteristics of soft polydimethylsiloxane. J. Mater. Res. 20, 2004 (2005).

    Article  CAS  Google Scholar 

  27. F. Carrillo, S. Gupta, M. Balooch, S.J. Marshall, G.W. Marshall, L. Pruitt, and C.M. Puttlitz: Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus. J. Mater. Res. 20, 2820 (2005).

    Article  CAS  Google Scholar 

  28. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1987).

    Google Scholar 

  29. C. Livermore and J. Voldman: Material properties database.https://www.mit.edu/~6.777/matprops/matprops.htm (2005).

    Google Scholar 

  30. R.S. Rivlin and D.W. Saunders: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. London, Ser. A 243, 251 (1951).

    Article  Google Scholar 

  31. M. Mooney: A theory of large elastic deformation. J. Appl. Phys. 11. 582 (1940).

    Article  Google Scholar 

  32. Y.S. Yu and Y.P. Zhao: Deformation of PDMS membrane and microcantilever by a water droplet: Comparison between Mooney-Rivlin and linear elastic constitutive models. J. Colloid Interface Sci. 332, 467 (2009).

    Article  CAS  Google Scholar 

  33. R.C. Huang, and L. Anand: Non-linear mechanical behavior of the elastomer polydimethylsiloxane (PDMS) used in the manufacture of microfluidic devices. (unpublished).

  34. G.I. Barenblatt: The mathematical theory of equilibrium of cracks in brittle fracture. Adv. Appl. Mech. 7, 55 (1962).

    Article  Google Scholar 

  35. D.S. Dugdale: Yielding of sheets containing slits. J. Mech. Phys. Solids 8, 100 (1960).

    Article  Google Scholar 

  36. K.L. Johnson and J.A. Greenwood: Adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192, 326 (1997).

    Article  CAS  Google Scholar 

  37. X. Shi and Y-P. Zhao: Comparison of various adhesion contact theories and the influence of dimensionless load parameter. J. Adhes. Sci. Technol. 18, 55 (2004).

    Article  CAS  Google Scholar 

  38. D.E. Goldberg: Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley Professional, Reading, MA, 1989).

    Google Scholar 

  39. R.L. Haupt and S.E. Haupt: Practical Genetic Algorithms (Wiley Interscience, New York, 1998).

    Google Scholar 

  40. C.J. Buchko, M.J. Slattery, K.M. Kozloff, and D.C. Martin: Mechanical properties of biocompatible protein polymer thin films. J. Mater. Res. 15, 231 (2000).

    Article  CAS  Google Scholar 

  41. L. Bes, K. Huan, E. Khoshdel, M.J. Lowe, C.F. McConville, and D.M. Haddleton: Poly(methylmethacrylate-dimethylsiloxane) triblock copolymers synthesized by transition metal mediated living radical polymerization: Bulk and surface characterization. Eur. Polym. J. 39, 5 (2003).

    Article  CAS  Google Scholar 

  42. A. Bietsch and B. Michel: Conformal contact and pattern stability of stamps used for soft lithography. J. Appl. Phys. 88, 4310 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen Fin Lina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y.X., Wei, P.J. & Lina, J.F. Modified method developed for contact-induced adhesion in indentation. Journal of Materials Research 24, 1795–1802 (2009). https://doi.org/10.1557/jmr.2009.0196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0196

Navigation