Skip to main content
Log in

Examination of an analytical phase-transformation model

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A comparison between results of a recently published quasi-exact solution of the temperature integral used for the Avrami model of isochronal phase transformations and an analytical phase-transformation model in relation to exact solutions from numerical integration has been performed. The results for the transformed fraction from the quasiexact solution are more precise than the corresponding results of the analytical model, whereas the results for the transformation rate from both models are sufficiently precise for the nucleation mode of site saturation or continuous nucleation. It has been further shown that an analytical solution of the transformation rate cannot be obtained using a quasi-exact solution of the temperature integral in case of mixed nucleation, and that the results of the corresponding solution with the analytical model substantially alleviate the influence of the approximated temperature integral. By this method, an analytical approach of modeling, which can substantially alleviate the deviation (of model prediction) arising from approximations to the temperature integral, has been developed. The proposed approach has been successfully applied to experimental data of the crystallization of bulk amorphous Pd-Ni-P-Cu alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

annealing time t for isothermal transformation or RT2/Φ for isochronal transformation

C c :

a constant defined by m, d, QN, and QG

D 0 :

pre-exponential term in expression for diffusion coefficient (m2/s)

d:

dimensionality of the growth

f:

transformed fraction

g:

particle-geometry factor

ΔH:

enthalpy change (J/mol)

ΔHpre:

enthalpy change for preannealing stage (J/mol)

ΔHtot:

enthalpy change for total transformation (J/mol)

K 0 :

pre-exponential factor for rate constant

m:

growth mode parameter

n:

growth exponent

N*:

number of pre-existing nuclei in mode of site saturation (m−3)

N 0 :

value of pre-exponential factor in mode of continuous nucleation (m−3s−1)

Q:

overall effective activation energy (kJ/mol)

Q G :

constant activation energy for growth (kJ/mol)

Q N :

constant activation energy for nucleation (kJ/mol)

r2/r1:

a ratio between the extended fraction conceived as due to pure continuous nucleation and that conceived as due to pure site saturation

R:

universal gas constant (J/K mol)

T:

temperature (K)

T 0 :

starting temperature for annealing (K)

T pre :

preannealing temperature (K)

t:

time for transformation (s)

τ:

time for nucleation (s)

V e :

extended volume (m3)

V:

real volume (m3)

v:

interface velocity (m/s)

v 0 :

pre-exponential term in expression for v (m/s)

Φ:

heating rate (K/s)

x e :

extended transformed fraction

Y:

volume at time t of a particle nucleated at time ı (m3)

References

  1. W.A. Johnson and R.F. Mehl: Reaction kinetics in processes of nucleation and growth. Am. Inst. Miner. Pet. Eng. 135, 416 (1939).

    Google Scholar 

  2. M. Avrami: Kinetics of phase change(I): General theory. J. Chern. Phys. 7, 1109 (1939).

    Article  Google Scholar 

  3. M. Avrami: Kinetics of phase change(II): Transformation-time relations for random distribution of nuclei. J. Chern. Phys. 8, 212 (1940).

    Article  CAS  Google Scholar 

  4. M. Avrami: Granulation, phase change, and microstructure: Kinetics of phase change(III). J. Chern. Phys. 9, 177 (1941).

    Article  CAS  Google Scholar 

  5. A.N. Kolgomorov and M. Aka-Izv: Kinetics of phase change. Nauk SSSR Ser Fiz. 3, 355 (1937).

    Google Scholar 

  6. J.W. Christian: The Theory of Transformation in Metals and Alloys. Part 1: Equilibrium and General Kinetics Theory (Perga-mon Press, New York, 1975).

    Google Scholar 

  7. E.J. Mittemeijer: Analysis of the kinetics of phase transformations. J. Mater. Sci. 27, 3977 (1992).

    Article  CAS  Google Scholar 

  8. E. Woldt: The relationship between isothermal and non-isothermal description of Johnson-Mehl-Avrami-Kolmogorov kinetics., J. Phys. Chern. Solids 53, 521 (1992).

    Article  Google Scholar 

  9. D.W. Henderson: Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids., J. Non-Cryst. Solids 30, 301 (1979).

    Article  CAS  Google Scholar 

  10. J. Vazquez, P.L. Lopez-Alemany, P. Villares, and R. Jimenez-Garay: Glass transition and crystallization kinetics of Sb14.5As29.5Se53. J. Phys. Chern. Solids 61, 493 (2001).

    Article  Google Scholar 

  11. J. Baram and V. Erukhimovitch: Application of thermal analysis methods to nucleation and growth transformation kinetics. Thermochim. Acta 81, 291 (1997).

    Google Scholar 

  12. J. Malek: Influence of the degree of substitution in bio-polymeric Schiff bases on the kinetic of thermal decomposition by non-isothermal procedure. Thermochim. Acta 61, 267 (1995).

    Google Scholar 

  13. M.J. Starink: Kinetic equations for diffusion-controlled precipitation reactions. J. Math. Sci. 32, 4061 (1997).

    Article  CAS  Google Scholar 

  14. E.J. Mittemeijer and F. Sommer: Solid-state phase transformation kinetics: A modular transformation model. Z. Metallkd. 93, 5 (2002).

    Article  Google Scholar 

  15. A. Calka and A.P. Radlinski: Dsc study of surface induced crystallization in Pd-Si metallic glasses. Acta Mater. 35, 1823 (1987).

    Article  CAS  Google Scholar 

  16. H.E. Kissinger: Reaction kinetics in differential thermal analysis. Anal. Chern. 29, 1702 (1957).

    Article  CAS  Google Scholar 

  17. B.J. Kooi: Monte Carlo simulations of phase transformations caused by nucleation and subsequent anisotropic growth: Extension of the Johnson-Mehl-Avrami- Kolmogorov theory. Phys. Rev. B: Condens. Matter 70 (22), 224108 (2004).

    Article  Google Scholar 

  18. A.T.W. Kempen, F. Sommer, and E.J. Mittemeijer: The kinetics of the austenite-ferrite phase transformation of Fe-Mn: Differential thermal analysis during cooling. Acta Mater. 50, 3545 (2002).

    Article  CAS  Google Scholar 

  19. H. Nitsche, M. Stanislowski, F. Sommer, and E.J. Mittemeijer: Kinetics of crystallization of amorphous Mg80Cu10Y10. Z. Metallkd. 96, 1341 (2005).

    Article  CAS  Google Scholar 

  20. A.T.W. Kempen, F. Sommer, and E.J. Mittemeijer: Determination and interpretation of isothermal and non-isothermal transformation kinetics; The effective activation energies in terms of nucleation and growth. J. Mater. Sci. 37, 1321 (2002).

    Article  CAS  Google Scholar 

  21. F. Liu, F. Sommer, and E.J. Mittemeijer: An analytical model for isothermal and isochronal transformation kinetics. J. Mater. Sci. 39, 1621 (2004).

    Article  CAS  Google Scholar 

  22. F. Liu, F. Sommer, C. Bos, and E.J. Mittemeijer: Analysis of solid-state phase transformation kinetics: Models and recipes. Int. Mater. Rev. 52 (4), 193 (2007).

    Article  CAS  Google Scholar 

  23. F. Liu, F. Sommer, and E.J. Mittemeijer: analysis of the kinetics of phase transformations; Roles of nucleation index and temperature dependent site saturation, and recipes for the extraction of kinetic parameters. J. Mater. Sci. 42, 573 (2007).

    Article  CAS  Google Scholar 

  24. F. Liu, F. Somme, and E.J. Mittemeijer: Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys: Application to calorimetric data. Acta Mater. 52, 3207 (2004).

    Article  CAS  Google Scholar 

  25. F. Liu, F. Sommer, and E.J. Mittemeijer: Parameter determination of an analytical model for phase transformation kinetics: Application to crystallization of amorphous Mg–Ni alloys. J. Mater. Res. 19, 2586 (2004).

    Article  CAS  Google Scholar 

  26. J.H. Flynn: Thermal analysis kinetics, past, present and future. Thermochim. Acta 203, 519 (1992).

    Article  CAS  Google Scholar 

  27. J. Farjas and P. Roura: Modification of the Kolmogorov–Johnson–Mehl–Avrami rate equation for non-isothermal experiments and its analytical solution. Acta Mater. 54, 5573 (2006).

    Article  CAS  Google Scholar 

  28. M.J. Starink: On the meaning of the impingement parameter in kinetic equations for nucleation and growth reactions. J. Mater. Sci. 36, 4433 (2001).

    Article  CAS  Google Scholar 

  29. J. Va’zquez, C. Wagner, P. Villares, and R. Jimenez-Garay: A theoretical method for determining the crystallized fraction and kinetic parameters by DSC, using non-isothermal techniques. Acta Mater. 44, 4807 (1996).

    Article  Google Scholar 

  30. G. Ruitenberg, E. Woldt, and A.K. Petford-Long: Comparing Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim. Acta 378, 97 (2001).

    Article  CAS  Google Scholar 

  31. J.J. Orfao: A new method for temperature integral. AIChE J. 2905, 53 (2007).

    Google Scholar 

  32. A.T.W. Kempen, F. Sommer, and E.J. Mittemeijer: The kinetics of the austenite-ferrite phase transformation of Fe-Mn: Differential thermal analysis during cooling. Acta Mater. 50, 1319 (2002).

    Article  CAS  Google Scholar 

  33. F. Liu, G.C. Yang, and J.N. Liu: Comparison between an analytical model and JMA kinetics for isothermally and isochronally conducted transformations. Thermochim. Acta 183, 438 (2005).

    Google Scholar 

  34. F. Liu, S.J. Song, J.F. Xu, and J. Wang: Determination of nucleation and growth modes from evaluation of transformed fraction in solid-state transformations. Acta Mater. 56, 6003 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Ma, Y.Z., Hu, X. et al. Examination of an analytical phase-transformation model. Journal of Materials Research 24, 1761–1770 (2009). https://doi.org/10.1557/jmr.2009.0194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0194

Navigation