Skip to main content
Log in

Monodisperse SiC/vinyl ester nanocomposites: Dispersant formulation, synthesis, and characterization

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel dispersant “mono-2-(methacryloyloxy)ethyl succinate” was formulated for dispersing 30-nm SiC nanoparticles in vinyl ester resin. The eight carbon rule was used as the guideline to achieve a particle–particle separation of 20 to 60 nm for colloid stability. Fourier transform infrared spectroscopy was performed to characterize the SiC particle surfaces. Only a negligible amount of oxidized layer was observed; which illustrates that the SiC surface is basic. Thus, the Lewis base-Lewis acid reactions make the functional group–COOH an effective adsorbate to the SiC nanoparticle surface. The organofunctional group “methacrylates,” which exhibits the best wet strength with polyester copolymerizes with styrene monomers in the vinyl ester during cure. Hence, this novel dispersant also acts as an efficient coupling agent that reacts with both SiC and vinyl ester. The monolayer coverage dosage of 62 fractional wt% of the dispersant was used to attain the minimum filled resin viscosity. The multicomponent compositional imaging using atomic force microscopy confirmed the monodisperse SiC nanoparticles in vinyl ester. The 3 vol% SiC reinforced vinyl ester achieved a 75% increase in modulus, 42% increase in strength, and 75% increase in toughness as compared with the neat resin without nanofiller reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Roco: Nanoparticles and nanotechnology research. J. Nano-part. Res. 1, 1 (1999).

    Article  Google Scholar 

  2. V.M.F. Evora and A. Shukla: Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites. Mater. Sci. Eng., A 361, 358 (2003).

    Article  Google Scholar 

  3. V. Yong and H.T. Hahn: Processing and properties of SiC/vinyl ester nanocomposites. Nanotechnology 15, 1338 (2004).

    Article  CAS  Google Scholar 

  4. V. Yong and H.T. Hahn: Dispersant optimization using design of experiments for SiC/vinyl ester nanocomposites. Nanotechnology 16, 354 (2005).

    Article  CAS  Google Scholar 

  5. M.T. Ton-That, F. Perrin-Sarazin, K.C. Cole, M.N. Bureau, and J. Denault: Polyolefin nanocomposites: Formulation and development. Polym. Eng. Sci. 44, 1212 (2004).

    Article  CAS  Google Scholar 

  6. V. Yong and H.T. Hahn: Rheology of silicon carbide/vinyl ester nanocomposites. J. Appl. Polym. Sci. 102, 4365 (2006).

    Article  CAS  Google Scholar 

  7. H. Preiss, L.M. Berger, and M. Braun: Formation of black glasses and silicon carbide from binary carbonaceous/silica hydrogels. Carbon 33, 1739 (1995).

    Article  CAS  Google Scholar 

  8. R.F. Conley: Practical Dispersion (Wiley, New York, 1996).

    Google Scholar 

  9. E. Kissa: Dispersions (Marcel Dekker, New York, 1999).

    Google Scholar 

  10. Surface analysis of semiconducting nanoparticles by FTIR spectroscopy, in Nanocrystalline Metals and Oxides: Selected Properties and Applications, edited by P. Knauth and J. Schoonman (Springer, Kluwer Academic, Boston, 2002), pp. 165–187.

    Google Scholar 

  11. M. Okuyama, G.J. Garvey, T.A. Ring, and J.S. Haggerty: Dispersion of silicon-carbide powders in nonaqueous solvents. J. Am. Ceram. Soc. 72, 1918 (1989).

    Article  CAS  Google Scholar 

  12. Q.S. Yu, Y.J. Kim, and H.B. Ma: Plasma treatment of diamond nanoparticles for dispersion improvement in water. Appl. Phys. Lett. 88, 231503 (2006).

    Article  Google Scholar 

  13. M.I. Baraton and L. Merhari: Surface chemistry of TiO2 nanoparticles: Influence on electrical and gas sensing properties. J. Eur. Ceram. Soc. 24, 1399 (2004).

    Article  CAS  Google Scholar 

  14. C. Drake, S. Deshpande, and S. Seal: Determination of free-carrier density and space charge layer variation in nanocrystalline In3+ doped tin oxides using Fourier transform infrared spectroscopy. Appl. Phys. Lett. 89, 143116 (2006).

    Article  Google Scholar 

  15. F.M. Liu, B.F. Quan, L.H. Chen, L.X. Yu, and Z.Q. Liu: Investigation on SnO2 nanopowders stored for different time and BaTiO3 modification. Mater. Chem. Phys. 87, 297 (2004).

    Article  CAS  Google Scholar 

  16. Y. Sun and T. Miyasato: Infrared absorption properties of nanocrystalline cubic SiC films. Jpn. J. Appl. Phys. 37, 5485 (1998).

    Article  CAS  Google Scholar 

  17. H. Kamiya, M. Mitsui, H. Takano, and S. Miyazawa: Influence of particle diameter on surface silanol structure, hydration forces, and aggregation behavior of alkoxide-derived silica particles. J. Am. Ceram. Soc. 83, 287 (2000).

    Article  CAS  Google Scholar 

  18. T. Merlemejean, E. Abdelmounim, and P. Quintard: Oxide layer on silicon-carbide powder: A FT-IR investigation. J. Mol. Struct. 349, 105 (1995).

    Article  CAS  Google Scholar 

  19. G.L. Harris: Properties of Silicon Carbide (EMIS Datareviews Series No. 13, IEE, INSPEC, London, UK, 1995).

    Google Scholar 

  20. L.E. Nielsen and R.F. Landel: Mechanical Properties of Polymers and Composites (Marcel Dekker, New York, 1994).

    Google Scholar 

  21. R.P. Singh, M. Zhang, and D. Chan: Toughening of a brittle thermosetting polymer: Effects of reinforcement particle size and volume fraction. J. Mater. Sci. 37, 781 (2002).

    Article  CAS  Google Scholar 

  22. S.L. Gao and E. Mader: Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Compos. Part A: Appl. Sci. Manuf. 33, 559 (2002).

    Article  Google Scholar 

  23. S.L. Gao, E. Mader, and S.F. Zhandarov: Carbon fibers and composites with epoxy resins: Topography, fractography and interphases. Carbon 42, 515 (2004).

    Article  CAS  Google Scholar 

  24. B. Mader, S.L. Gao, and R. Plonka: Enhancing the properties of composites by controlling their interphase parameters. Adv. Eng. Mater. 6, 147 (2004).

    Article  Google Scholar 

  25. Z.H. Guo, T. Pereira, O. Choi, Y. Wang, and H.T. Hahn: Surface functionalized alumina nanoparticle filled polymeric nanocompo-sites with enhanced mechanical properties. J. Mater. Chem. 16, 2800 (2006).

    Article  CAS  Google Scholar 

  26. X.P. Zhang, B.Q. Sun, R.H. Friend, H.C. Guo, D. Nau, and H. Giessen: Metallic photonic crystals based on solution-processible gold nanoparticles. Nano Lett. 6, 651 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Thomas Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong, V., Hahn, H.T. Monodisperse SiC/vinyl ester nanocomposites: Dispersant formulation, synthesis, and characterization. Journal of Materials Research 24, 1553–1558 (2009). https://doi.org/10.1557/jmr.2009.0176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0176

Navigation