Skip to main content
Log in

Importance of surface preparation on the nano-indentation stress-strain curves measured in metals

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, we investigated experimentally the various factors influencing the extraction of indentation stress-strain curves from spherical nanoindentation on metal samples using two different tip radii. In particular, we focused on the effects of (i) the surface preparation techniques used, (ii) the presence of a surface oxide layer, and (iii) the occurrence of pop-ins at the elastic-plastic transition on our newly developed data analysis methods for extracting reliable indentation stress-strain curves. Rough mechanical polishing was shown to introduce a large scatter in the measured indentation yield strengths, whereas electropolishing or vibropolishing produced consistent results reflective of the pristine sample. The data analysis techniques used were able to discard the portions of the raw data affected by a thin oxide layer, present on most metal surfaces, and yield reasonable indentation stress-strain curves. Experiments with different indenter tip radii on annealed and cold-worked samples indicated that pop-ins are caused by delayed nucleation of dislocations in the sample under the indenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Tabor: The Hardness of Metals (Oxford University Press, Oxford, UK, 1951).

    Google Scholar 

  2. C.A. Schuh: Nanoindentation studies of materials. Mater. Today 9, 32 (2006).

    Article  CAS  Google Scholar 

  3. A.C. Fischer-Cripps: Review of analysis methods for sub-micron indentation testing. Vacuum 58, 569 (2000).

    Article  CAS  Google Scholar 

  4. A.C. Fischer-Cripps: Nanoindentation, 2nd ed. (Springer, New York, 2004).

    Book  Google Scholar 

  5. W.C. Oliver and G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  6. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  7. G.M. Pharr and A. Bolshakov: Understanding nanoindentation unloading curves. J. Mater. Res. 17(10), 2260 (2002).

    Article  Google Scholar 

  8. S. Basu, A. Moseson, and M.W. Barsoum: On the determination of spherical nanoindentation stress-strain curves. J. Mater. Res. 21, 2628 (2006).

    Article  CAS  Google Scholar 

  9. J.S. Field and M.V. Swain: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  10. J.S. Field and M.V. Swain: Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 (1995).

    Article  CAS  Google Scholar 

  11. M.V. Swain: Mechanical property characterization of small volumes of brittle materials with spherical tipped indenters. Mater. Sci. Eng., A 253, 160 (1998).

    Article  Google Scholar 

  12. A. Murugaiah, M.W. Barsoum, S.R. Kalidindi, and T. Zhen: Spherical nanoindentations and kink bands in Ti3SiC2. J. Mater. Res. 19, 1139 (2004).

    Article  CAS  Google Scholar 

  13. L.H. He, N. Fujisawa, and M.V. Swain: Elastic modulus and stress-strain response of human enamel by nano-indentation. Bio-mater. 27, 4388 (2006).

    CAS  Google Scholar 

  14. B. Taljat, T. Zacharia, and F. Kosel: New analytical procedure to determine stress-strain curve from spherical indentation data. Int. J. Solids Struct. 35, 4411 (1998).

    Article  Google Scholar 

  15. M. Beghini, L. Bertini, and V. Fontanari: Evaluation of the stress-strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 43, 2441 (2006).

    Article  CAS  Google Scholar 

  16. J. Michler, S. Stauss, P. Schwaller, J-L. Bucaille, and E. Felder: Determining the stress-strain behavior at micro- and nanometer scales by coupling nanoindentation to numerical simulation. EMPA (Swiss Federal Laboratories for Materials Testing and Research) Publication 6 (2002).

  17. S. Stauss, P. Schwaller, J.L. Bucaille, R. Rabe, L. Rohr, J. Michler, and E. Blank: Determining the stress-strain behavior of small devices by nanoindentation in combination with inverse methods, in Proceedings of the 28th International Conference on MNE (Elsevier, New York, 2003), p. 818.

    Google Scholar 

  18. H. Pelletier: Predictive model to estimate the stress-strain curves of bulk metals using nanoindentation. Tribol. Int. 39, 593 (2006).

    Article  CAS  Google Scholar 

  19. S.R. Kalidindi and S. Pathak: Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater. 56, 3523 (2008).

    Article  CAS  Google Scholar 

  20. S. Pathak, S.R. Kalidindi, C. Klemenz, and N. Orlovskaya: Analyzing indentation stress-strain response of LaGaO3 single crystals using spherical indenters. J. Eur. Ceram. Soc. 28, 2213 (2008).

    Article  CAS  Google Scholar 

  21. S. Pathak, D. Stojakovic, and S.R. Kalidindi: Measurement of the local mechanical properties in polycrystalline samples using spherical nano-indentation and orientation imaging microscopy. Acta Mater. (2008, submitted).

  22. H. Hertz: Miscellaneous Papers (MacMillan and Co. Ltd., New York, 1896).

    Google Scholar 

  23. A.E.H. Love: Boussinesq’s problem for a rigid cone. J. Math. 10, 161 (1939).

    Google Scholar 

  24. J. Mencik and M.V. Swain: Errors associated with depth-sensing microindentation tests. J. Mater. Res. 10, 1491 (1995).

    Article  CAS  Google Scholar 

  25. S. Pathak, S.R. Kalidindi, B. Moser, C. Klemenz, and N. Orlovskaya: Analyzing indentation behavior of LaGaO3 single crystals using sharp indenters. J. Eur. Ceram. Soc. 28, 2039 (2008).

    Article  CAS  Google Scholar 

  26. M.W. Barsoum, T. Zhen, S.R. Kalidindi, M. Radovic, and A. Murugaiah: Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nat. Mater. 2, 107 (2003).

    Article  CAS  Google Scholar 

  27. G. Petzow: Metallographic Etching: Techniques for Metallotra-phy, Ceramography, Plastography, 2nd ed. (ASM International, New York, 1999).

    Google Scholar 

  28. A.S.M. Handbook, Vol. 9: Metallography and Microstructures (ASM International, 2004).

  29. S.A.S. Asif and J.B. Pethica: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 (1997).

    Article  CAS  Google Scholar 

  30. D.F. Bahr, D.E. Kramer, and W.W. Gerberich: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).

    Article  CAS  Google Scholar 

  31. N.A. Hill and J.W.S. Jones: The crystallographic dependence of low-load indentation hardness in beryllium. J. Nucl. Mater. 3, 137 (1961).

    Article  Google Scholar 

  32. G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties, 2nd ed. (The MIT Press, Boston, MA, 1971).

    Google Scholar 

  33. S.K. Venkataraman, D.L. Kohlstedt, and W.W. Gerberich: Continuous microindentation of passivating surfaces. J. Mater. Res. 8, 685 (1993).

    Article  CAS  Google Scholar 

  34. J.J. Vlassak and W.D. Nix: Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A 67, 1045 (1993).

    Article  Google Scholar 

  35. S.P. Timoshenko and J.N. Goodier: Theory of Elasticity, 3rd ed. (McGraw Hill Higher Education, New York, 1970).

    Google Scholar 

  36. Smithells Metals Reference Book, 8th ed. (Butterworth-Heinemann, Oxford, UK, 2004).

  37. N. Gane and F.P. Bowden: Microdeformation of solids. J. Appl. Phys. 39, 1432 (1968).

    Article  CAS  Google Scholar 

  38. J.B. Pethica and D. Tabor: Contact of characterised metal surfaces at very low loads: Deformation and adhesion. Surf. Sci. 89, 182 (1979).

    Article  CAS  Google Scholar 

  39. S.G. Corcoran, R.J. Colton, E.T. Lilleodden, and W. W. Gerberich: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B: Condens. Matter 55, 16057 (1997).

    Article  Google Scholar 

  40. W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, and J.T. Wyrobek: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).

    Article  CAS  Google Scholar 

  41. W.W. Gerberich, S. Venkataraman, J. Nelson, H. Huang, E. Lilleodden, and W. Bonin: Yield point phenomena and dislocation velocities underneath indentations into BCC crystals: in Thin Films: Stresses and Mechanical Properties V, edited by S.P. Baker, C.A. Ross, P.H. Townsend, C.A. Volkert, and P. Borgesen (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 629.

  42. W.W. Gerberich, S.K. Venkataraman, H. Huang, S.E. Harvey, and D.L. Kohlstedt: Injection of plasticity by millinewton contacts. Acta Metall. Mater. 43, 1569 (1995).

    Article  CAS  Google Scholar 

  43. A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, and S. Suresh: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 (2000).

    Article  CAS  Google Scholar 

  44. S. Harvey, H. Huang, S. Venkataraman, and W.W. Gerberich: Microscopy and microindentation mechanics of single crystal Fe-3 wt%Si: Part I. Atomic force microscopy of a small indentation. J. Mater. Res. 8, 1291 (1993).

    Article  CAS  Google Scholar 

  45. E.T. Lilleodden, W. Bonin, J. Nelson, J.T. Wyrobek, and W.W. Gerberich: In situ imaging of μN load indents into GaAs. J. Mater. Res. 10, 2162 (1995).

    Article  CAS  Google Scholar 

  46. A.B. Mann, J.B. Pethica, W.D. Nix, and S. Tomiya: Nanoindentation of epitaxial films: A study of pop-in events, in Thin Films: Stresses and Mechanical Properties V, edited by S.P. Baker, C.A. Ross, P.H. Townsend, C.A. Volkert, and P. Borgesen (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 271.

    Google Scholar 

  47. D. Maugis, G. Desalos-Andarelli, A. Heurtel, and R. Courtel: Adhesion and friction on Al thin foils related to observed dislocation density. ASLE Trans. 21, 1 (1978).

    Article  Google Scholar 

  48. T.A. Michalske and J.E. Houston: Dislocation nucleation at nano-scale mechanical contacts. Acta Mater. 46, 391 (1998).

    Article  CAS  Google Scholar 

  49. S. Suresh, T.G. Nieh, and B.W. Choi: Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41, 951 (1999).

    Article  CAS  Google Scholar 

  50. P. Tangyunyong, R.C. Thomas, J.E. Houston, T.A. Michalske, R.M. Crooks, and A.J. Howard: Nanometer-scale mechanics of gold films. Phys. Rev. Lett. 71, 3319 (1993).

    Article  CAS  Google Scholar 

  51. T.W. Wu, C. Hwang, J. Lo, and P. Alexopoulos: Microhardness and microstructure of ion-beam-sputtered, nitrogen-doped NiFe films. Thin Solid Films 166, 299 (1988).

    Article  CAS  Google Scholar 

  52. Y.L. Chiu and A.H.W. Ngan: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 (2002).

    Article  CAS  Google Scholar 

  53. Y.L. Chiu and A.H.W. Ngan: A TEM investigation on indentation plastic zones in Ni3Al(Cr,B) single crystals. Acta Mater. 50, 2677 (2002).

    Article  CAS  Google Scholar 

  54. W. Wang, C.B. Jiang, and K. Lu: Deformation behavior of Ni3Al single crystals during nanoindentation. Acta Mater. 51, 6169 (2003).

    Article  CAS  Google Scholar 

  55. Y. Gaillard, C. Tromas, and J. Woirgard: Study of the dislocation structure involved in a nanoindentation test by atomic force microscopy and controlled chemical etching. Acta Mater. 51, 1059 (2003).

    Article  CAS  Google Scholar 

  56. T.F. Page, W.C. Oliver, and C.J. McHargue: The deformation behavior of ceramic crystals subjected to very low load (nano) indentations. J. Mater. Res. 7, 450 (1992).

    Article  CAS  Google Scholar 

  57. J.B. Pethica and W.C. Oliver: Tip surface interactions in STM and AFM, in 7th General Conference of the Condensed Matter Division of the European Physical Society (Phys. Scr. Vol. T, European Physcial Society, Mulhouse, France, 1987), p. 61.

    Google Scholar 

  58. C.A. Schuh and A.C. Lund: Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 9, 2152 (2004).

    Article  CAS  Google Scholar 

  59. W. Xiaotong and N.P. Padture: Shear strength of ceramics. J. Mater. Sci. 39, 1891 (2004).

    Article  Google Scholar 

  60. T.H. Courtney: Mechanical Behavior of Materials, 2nd ed. (McGraw-Hill Science/Engineering/Math, New York, 1999).

    Google Scholar 

  61. A.E. Giannakopoulos and S. Suresh: Determination of elastoplas-tic properties by instrumented sharp indentation. Scr. Mater. 40, 1191 (1999).

    Article  CAS  Google Scholar 

  62. R.C. Thomas, J.E. Houston, T.A. Michalske, and R.M. Crooks: Mechanical response of gold substrates passivated by self-assembling monolayer films. Science 259, 1883 (1993).

    Article  CAS  Google Scholar 

  63. A. Kelly and N.H. Macmillan: Strong Solids, 3rd ed. (Clarendon Press, Oxford, UK, 1986), pp. xiv + 423.

    Google Scholar 

  64. C.A. Schuh and T.G. Nieh: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).

    Article  CAS  Google Scholar 

  65. B. Moser, J. Kuebler, H. Meinhard, W. Muster, and J. Michler: Observation of instabilities during plastic deformation by insitu SEM indentation experiments. Adv. Eng. Mater. 7, 388 (2005).

    Article  CAS  Google Scholar 

  66. G. Berces, N.Q. Chinh, A. Juhasz, and J. Lendvai: Occurrence of plastic instabilities in dynamic microhardness testing. J. Mater. Res. 13, 1411 (1998).

    Article  CAS  Google Scholar 

  67. D. Chrobak, K. Nordlund, and R. Nowak: Nondislocation origin of GaAs nanoindentation pop-in event. Phys. Rev. Lett. 98, 045502 (2007).

    Article  CAS  Google Scholar 

  68. V. Domnich, Y. Gogotsi, and S. Dub: Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 76, 2214 (2000).

    Article  CAS  Google Scholar 

  69. D.F. Bahr, J.C. Nelson, N.I. Tymiak, and W.W. Gerberich: The mechanical behavior of a passivating surface under potentiostatic control. J. Mater. Res. 12, 3345 (1997).

    Article  CAS  Google Scholar 

  70. P.L. Larsson, A.E. Giannakopoulos, E. Soderlund, D.J. Rowcliffe, and R. Vestergaard: Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221 (1996).

    Article  Google Scholar 

  71. A.B. Mann and J.B. Pethica: Role of atomic size asperities in the mechanical deformation of nanocontacts. Appl. Phys. Lett. 69, 907 (1996).

    Article  CAS  Google Scholar 

  72. A.B. Mann and J.B. Pethica: Dislocation nucleation and multiplication during nanoindentation testing, in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, J-E. Sundgren, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 153.

    Google Scholar 

  73. D.F. Bahr, C.M. Watkins, D.E. Kramer, and W.W. Gerberich: Yield point phenomena during indentation, in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, N. Burnham, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya R. Kalidindi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, S., Stojakovic, D., Doherty, R. et al. Importance of surface preparation on the nano-indentation stress-strain curves measured in metals. Journal of Materials Research 24, 1142–1155 (2009). https://doi.org/10.1557/jmr.2009.0137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0137

Navigation