Skip to main content
Log in

Where are the geometrically necessary dislocations accommodating small imprints?

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses of small indentations in copper single crystals exhibit only slight changes of the crystal orientation in the surroundings of the imprints. Far-reaching dislocations might be the reason for these small misorientation changes. Using EBSD and TEM technique, this work makes an attempt to visualize the far-propagating dislocations by introducing a twin boundary in the vicinity of small indentations. Because dislocations piled up at the twin boundary produce a misorientation gradient, the otherwise far-propagating dislocations can be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gao and Y. Huang: Geometrically necessary dislocation and size-dependent plasticity. Scr. Mater. 48, 113 (2003).

    Article  CAS  Google Scholar 

  2. A.H. Cottrell: The Mechanical Properties of Matter (Wiley, New York, 1964).

    Google Scholar 

  3. J.F. Nye: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153 (1953).

    Article  CAS  Google Scholar 

  4. M.F. Ashby: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 (1970).

    Article  CAS  Google Scholar 

  5. N.A. Stelmashenko, M.G. Walls, L.M. Brown, and Y.V. Milman: Microindentations on W and Mo oriented single crystals: An STM study. Acta Metall. Mater. 41, 2855 (1993).

    Article  CAS  Google Scholar 

  6. M.S. De Guzman, G. Neubauer, P. Flinn, and W.D. Nix: Role of indentation depth on the measured hardness of materials, in Thin Films: Stresses and Mechanical Properties IV, edited by P.H. Townsend, T.P. Weihs, J.E. Sanchez Jr., and P. Borgesen (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), p. 613.

    Google Scholar 

  7. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475 (1994).

    Article  CAS  Google Scholar 

  8. Q. Ma and D.R. Clarke: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853 (1995).

    Article  CAS  Google Scholar 

  9. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  10. M. Rester, C. Motz, and R. Pippan: Microstructural investigation of the volume beneath nanoindentations in copper. Acta Mater. 55, 6427 (2007).

    Article  CAS  Google Scholar 

  11. M. Rester, C. Motz, and R. Pippan: Microstructural investigation of the deformation zone below nano-indents in copper, in Fundamentals of Nanoindentation and Nanotribology IV, edited by E. Le Bourhis, D.J. Morris, M.L. Oyen, R. Schwaiger, and T. Staedler (Mater. Res. Soc. Symp. Proc. 1049, Warrendale, PA, 2008), AA03–03.

    Google Scholar 

  12. M. Rester, C. Motz, and R. Pippan: Indentation across size scales. A survey of indentation-induced plastic zones in copper 111 single crystals. Scr. Mater. 59, 742 (2008).

    Article  CAS  Google Scholar 

  13. M. Rester, C. Motz, and R. Pippan: The deformation-induced zone below large and shallow nanoindentations: A comparative study using EBSD and TEM. Philos. Mag. Lett. 88, 879 (2008).

    Article  CAS  Google Scholar 

  14. Y.L. Chiu and A.H.W. Ngan: A TEM investigation on indentation plastic zones in Ni3Al(Cr,B) single crystals. Acta Mater. 50, 2677 (2002).

    Article  CAS  Google Scholar 

  15. P.C. Wo, A.H.W. Ngan, and Y.L. Chiu: TEM measurement of nanoindentation plastic zones in Ni3Al. Scr. Mater. 55, 557 (2006).

    Article  CAS  Google Scholar 

  16. P.C. Wo, A.H.W. Ngan, and Y.L. Chiu: Erratum to “TEM measurement of nanoindentation plastic zones in Ni3Al.”Scr. Mater. 56, 323 (2007).

    Article  CAS  Google Scholar 

  17. A.M. Minor, S.A.S. Asif, Z. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, and O.L. Warren: A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5, 697 (2006).

    Article  CAS  Google Scholar 

  18. A. Gouldstone, K.J. Van Vliet, and S. Suresh: Nanoindentation: Simulation of defect nucleation in a crystal. Nature 411, 656 (2001).

    Article  CAS  Google Scholar 

  19. J. Li, K.J. Van Vliet, T. Zhu, S. Yip, and S. Suresh: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307 (2002).

    Article  CAS  Google Scholar 

  20. T. Zhu, J. Li, K.J. Van Vliet, S. Ogata, S. Yip, and S. Suresh: Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J. Mech. Phys. Solids 52, 691 (2004).

    Article  CAS  Google Scholar 

  21. M. Hafok, A. Vorhauer, J. Keckes, and R. Pippan: HPT-deformation of copper and nickel single crystals. Mater. Sci. Forum 503–504, 621 (2006).

    Article  Google Scholar 

  22. D.S. Balint, V.S. Deshpande, A. Needleman, and E. Van der Giessen: Discrete dislocation plasticity analysis of the wedge indentation of films. J. Mech. Phys. Solids 54, 2281 (2006).

    Article  Google Scholar 

  23. H.G.M. Kreuzer and R. Pippan: Discrete dislocation simulation of nanoindentation: Indentation size effect and the influence of slip band orientation. Acta Mater. 55, 3229 (2007).

    Article  CAS  Google Scholar 

  24. L. Nicola, A.F. Bower, K-S. Kim, A. Needleman, and E. Van der Giessen: Surface versus bulk nucleation of dislocations during contact. J. Mech. Phys. Solids 55, 1120 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rester, M., Motz, C. & Pippan, R. Where are the geometrically necessary dislocations accommodating small imprints?. Journal of Materials Research 24, 647–651 (2009). https://doi.org/10.1557/jmr.2009.0131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0131

Navigation