Skip to main content
Log in

Indentation fracture of silicone gels

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Indentation tests were performed, using a flat punch probe, on silicone gels to induce failure under compression. The silicone gels were formed from networks of vinyl-terminated polydimethylsiloxane (PDMS) with molecular weights of 800 and 28,000 g/mol and a sol fraction of trimethylsiloxy-terminated PDMS with molecular weights ranging from 1250 to 139,000 g/mol. Cone cracks were observed in samples that fractured from defects at the sample surface, but failure more commonly originated from the corners of the indenter. Ring cracks were observed for the most highly compliant samples that fractured at indentation depths approaching the overall thickness of the sample. In these cases we generally observed a delayed fracture response, with a time delay that increased with increasing sol fraction and decreased with increasing indentation load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Lawn and R. Wilshaw: Indentation fracture—Principles and applications. J. Math. Sci. 10, 1049 (1975).

    Article  Google Scholar 

  2. H. Chai and B.R. Lawn: Fracture mode transitions in brittle coatings on compliant substrates as a function of thickness. J. Mater. Res. 19, 1752 (2004).

    Article  CAS  Google Scholar 

  3. H. Chai and B.R. Lawn: Failure of brittle layers on polymeric substrates from Vickers indentation. Scr. Mater. 55, 335 (2006).

    Article  CAS  Google Scholar 

  4. R. Lach, L.A. Gyurova, and W. Grellmann: Application of indentation fracture mechanics approach for determination of fracture toughness of brittle polymer systems. Pohm. Test. 26, 51 (2007).

    CAS  Google Scholar 

  5. O.A. Shergold and N.A. Fleck: Mechanisms of deep penetration of soft solids, with application to the injection and wounding of skin. Proc. R. Soc. London, Ser. A 460, 3037, (2004).

    Article  Google Scholar 

  6. O.A. Shergold and N.A. Fleck: Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin. Trans. ASME 127, 838 (2005).

    Google Scholar 

  7. M.A. Cox, N.J.B. Driessen, C.V.C. Bouten, and F.P.T. Baaijens: Mechanical characterization of anisotropic planar biological soft tissues using large indentation: A computational feasibility study. Trans. ASME 128, 428 (2006).

    Google Scholar 

  8. C. Nguyen and T. Vu-Khanh: Mechanics and mechanisms of puncture of elastomer membranes., J. Math. Sci. 39, 7361 (2004).

    Article  CAS  Google Scholar 

  9. N. Gilra, C. Cohen, R.M. Briber, B.J. Bauer, R.C. Hedden, and A.Z. Panagiotopoulos: A SANS study of the conformational behavior of linear chains in compressed and uncompressed end-linked elastomers. Macromolecules 34, 7773 (2001).

    Article  CAS  Google Scholar 

  10. K. McLoughlin, J.K. Waldbieser, C. Cohen, and T.M. Duncan: End-linked poly(dimethylsiloxane) elastomers: 2H-nuclear magnetic resonance investigations of compression-induced segment anisotropy. Macromolecules 30, 1044 (1997).

    Article  CAS  Google Scholar 

  11. S.K. Patel, S. Malone, C. Cohen, J.R. Gillmor, and R.H. Colby: Elastic modulus and equilibrium swelling of poly(dimethylsiloxane) networks. Macromolecules 25, 5241 (1992).

    Article  CAS  Google Scholar 

  12. A.L. Larsen, K. Hansen, P. Sommer-Larsen, O. Hassager, A. Bach, S. Ndoni, and M. Jorgensen: Elastic properties of nonstoichiometric reacted PDMS networks. Macromolecules 36, 10063 (2003).

    Article  CAS  Google Scholar 

  13. A.J. Chalk and J.F. Harrod: Homogeneous catalysis. II. The mechanism of the hydrosilation of olefins catalyzed by Group VIII metal complexes. J. Am. Chem. Soc. 87, 16 (1965).

    Article  CAS  Google Scholar 

  14. P.L. Drzal and K.R. Shull: Origins of mechanical strength and elasticity in thermally reversible, acrylic triblock copolymer gels. Macromolecules 36, 2000 (2003).

    Article  CAS  Google Scholar 

  15. W-C. Lin, K.R. Shull, C.Y. Hui, and Y-Y. Lin: Contact measurement of Internal fluid flow within poly(n-isopropyl acrlyamide gels)., J. Chem. Phys. 127, 094906 (2007).

    Article  Google Scholar 

  16. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  17. K.R. Shull: Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng., R 36, 1 (2002).

    Article  Google Scholar 

  18. E.M. Valles and C.W. Macosko: Properties of networks formed by end linking of poly(dimethylsiloxane). Macromolecules 12, 673 (1979).

    Article  CAS  Google Scholar 

  19. M. Gottlieb, C.W. Macosko, G.S. Benjamin, K.O. Meyers, and E.W. Merrill: Equilibrium modulus of model poly(dimethylsiloxane) networks. Macromolecules 14, 1039 (1981).

    Article  CAS  Google Scholar 

  20. S.H. Yoo, C. Cohen, and C.Y. Hui: Mechanical and swelling properties of PDMS interpenetrating polymer networks. Polymer (Guildf.) 47, 6226 (2006).

    Article  CAS  Google Scholar 

  21. R. Mrozek and J. Lenhart: unpublished results.

  22. A.N. Gent: Compression of rubber blocks. Rubber Chem. Technol. 67, 549 (1994).

    Article  Google Scholar 

  23. A.N. Gent: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59 (1996).

    Article  CAS  Google Scholar 

  24. V.R. Krishnan and C-Y. Hui: Large deformation of soft elastic materials in adhesive contact with a rigid cylindrical flat punch. Soft Matter 4, 1909 (2008).

    Article  CAS  Google Scholar 

  25. M.E. Seitz, D. Martina, T. Baumberger, V.R. Krishnan, C-Y. Hui, and K.R. Shull: Fracture and large strain behavior of self-assembled triblock copolymer gels. Soft Matter 5, 447 (2009).

    Article  CAS  Google Scholar 

  26. C. Kocer and R.E. Collins: Angle of Hertzian cone cracks. J. Am. Ceram. Soc. 81, 1736 (1998).

    Article  CAS  Google Scholar 

  27. T. Baumberger, C. Caroli, and D. Martina: Fracture of a biopolymer gel as a viscoplastic disentanglement process. Eur. Phys. J. E. 21, 81 (2006).

    Article  CAS  Google Scholar 

  28. T. Baumberger, C. Caroli, and D. Martina: Solvent control of crack dynamics in a reversible hydrogel. Nat. Mater. 5, 552 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth R. Shull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, WC., Otim, K.J., Lenhart, J.L. et al. Indentation fracture of silicone gels. Journal of Materials Research 24, 957–965 (2009). https://doi.org/10.1557/jmr.2009.0128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0128

Navigation