Skip to main content
Log in

A new insight on reversible deformation and incipient plasticity during nanoindentation test in MgO

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, nucleation of dislocations in magnesium oxide (MgO) during nanoindentation with a spherical indenter is investigated. For flat and defect-free surfaces prepared by chemo/mechanical polishing, reversible load–displacement curves have been obtained for load as high as 300 mN, whereas on a cleaved MgO surface, pop-in and plastic deformation occur at 10 mN with the same indenter. Furthermore, these reversible curves deviate from the Hertz contact theory. Indented areas have then been characterized by atomic force microscopy and nanoetching. In some cases, few slip lines are observed for reversible indentation tests. However, the slip lines position indicate that the nucleation process of the corresponding dislocations is different from that involved during a pop-in phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Fischer-Cripps: Introduction to Contact Mechanics (Springer, New York, 2000).

    Google Scholar 

  2. K.A. Nibur and D.F. Bahr: Identifying slip systems around indentations in FCC metals. Scr. Mater. 49, 1055 (2003).

    Article  CAS  Google Scholar 

  3. C. Tromas, Y. Gaillard, and J. Woirgard: Nucleation of dislocations during nanoindentation in MgO. Philos. Mag. 86, 5595 (2006).

    Article  CAS  Google Scholar 

  4. C.A. Schuh: Nanoindentation studies of materials. Mater. Today 9, 32 (2006).

    Article  CAS  Google Scholar 

  5. T.F. Page, W.C. Oliver, and C.J. McHargue: The deformation behavior of ceramic crystals subjected to very low load (nano) indentations. J. Mater. Res. 7, 450 (1992).

    Article  CAS  Google Scholar 

  6. A.M. Minor, E.T. Lilleodden, E.A. Stach, and J.W. Morris: Direct observations of incipient plasticity during nanoindentation of Al. J. Mater. Res. 19, 176 (2004).

    Article  CAS  Google Scholar 

  7. W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, and J.T. Wyrobek: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).

    Article  CAS  Google Scholar 

  8. S.A. Syed Asif and J.B. Pethica: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 (1997).

    Article  Google Scholar 

  9. Y.L. Chiu and A.H.W. Ngan: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 (2002).

    Article  CAS  Google Scholar 

  10. D.E. Kramer, K.B. Yoder, and W.W. Gerberich: Surface constrained plasticity: Oxide rupture and the yield point process. Philos. Mag. 81, 2033 (2001).

    Article  CAS  Google Scholar 

  11. W.W. Gerberich, S.K. Venkataraman, H. Huang, S.E. Harvey, and D.L. Kohlstedt: The injection of plasticity by millinewtons contacts. Acta Metall. Mater. 43, 1569 (1994).

    Article  Google Scholar 

  12. CL. Kelchner, S.J. Plimpton, and J.C. Hamilton: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998).

    Article  CAS  Google Scholar 

  13. T.A. Michalske and J.E. Houston: Dislocation nucleation at nano-scale mechanical contacts. Acta Mater. 46, 391 (1997).

    Article  Google Scholar 

  14. J. Li: The mechanics and physics of defect nucleation. MRS Bull. 32, 151 (2007).

    Article  CAS  Google Scholar 

  15. K.J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh: Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67, 104105 (2003).

    Article  Google Scholar 

  16. J. Knap and M. Ortiz: Effect of indenter-radius size on Au(001) nanoindentation. Phys. Rev. Lett. 90, 226102 (2003).

    Article  CAS  Google Scholar 

  17. V. Navarro, O. Rodriguez de la Fuente, A. Mascaraque, and J.M. Rojo: Uncommon dislocation processes at the incipient plasticity of stepped gold surfaces. Phys. Rev. Lett. 100, 105504 (2008).

    Article  CAS  Google Scholar 

  18. A.M. Minor, S.A. Syed Asif, Z. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, and O.L. Warren: A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5, 697 (2006).

    Article  CAS  Google Scholar 

  19. Y. Gaillard, C. Tromas, and J. Woirgard: Study of the dislocation structure involved in a nanoindentation test by atomic force microscopy and controlled chemical etching. Acta Mater. 51, 1059 (2002).

    Article  Google Scholar 

  20. A.S. Keh: Dislocations in indented magnesium oxide crystals. J. Appl. Phys. 31, 1538 (1960).

    Article  CAS  Google Scholar 

  21. C. Tromas, J.C. Girard, and J. Woirgard: Study by atomic force microscopy of elementary deformation mechanisms involved in low-load indentations in MgO crystals. Philos. Mag. A 80, 2325 (2000).

    Article  CAS  Google Scholar 

  22. I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A.M. Baro: WSXM: A software for scanning-probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  CAS  Google Scholar 

  23. C. Tromas, Y. Gaillard, and J. Woirgard: Nucleation of dislocations during nanoindentation in MgO. Philos. Mag. 86, 5595 (2006).

    Article  CAS  Google Scholar 

  24. D.F. Bahr, D.E. Kramer, and W.W. Gerberich: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).

    Article  CAS  Google Scholar 

  25. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985), p. 93.

    Book  Google Scholar 

  26. S.V. Sinogeikin and J.D. Bass: Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. Phys. Earth Planet Inter. 120, 43 (2000).

    Article  CAS  Google Scholar 

  27. J.Z. Zhao, L.Y. Lu, X.R. Chen, and Y.L. Bai: First-principles calculations for elastic properties of the rocksalt structure MgO. Phys. Biol. 387, 245 (2007).

    CAS  Google Scholar 

  28. J. Woirgard and J.C. Dargenton: An alternative method for penetration depth determination in nanoindentation measurements. J. Mater. Res. 12, 2455 (1997).

    Article  CAS  Google Scholar 

  29. M.T. Hanson and T. Johnson: The elastic field for spherical hertzian contact of isotropic bodies revisited: Some alternative expressions. J. Tribology 115, 327 (1993).

    Article  Google Scholar 

  30. Y. Gaillard, C. Tromas, and J. Woirgard: Quantitative analysis of dislocation pile-ups nucleated during nanoindentation in MgO. Acta Mater. 54, 1409 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Tromas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montagne, A., Tromas, C., Audurier, V. et al. A new insight on reversible deformation and incipient plasticity during nanoindentation test in MgO. Journal of Materials Research 24, 883–889 (2009). https://doi.org/10.1557/jmr.2009.0127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0127

Navigation