Skip to main content
Log in

Determination of plastic properties of metals by instrumented indentation using a stochastic optimization algorithm

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel optimization approach, capable of extracting the mechanical properties of an elasto-plastic material from indentation data, is proposed. Theoretical verification is performed on two simulated configurations. The first is based on the analysis of the load–displacement data and the topography of the residual imprint of a single conical indenter. The second is based on the load–displacement data obtained from two conical indenters with different semi-angles. In both cases, a semi-analytical approach [e.g., Dao et al., Acta Mater. 49, 3899 (2001) and Bucaille et al., Acta Mater. 51, 1663 (2003)] is used to estimate Young’s modulus, yield stress, and strain hardening coefficient from the load–displacement data. An inverse finite element model, based on a commercial solver and a newly developed optimization algorithm based on a robust stochastic methodology, uses these approximate values as starting values to identify parameters with high accuracy. Both configurations use multiple data sets to extract the elastic-plastic material properties; this allows the mechanical properties of materials to be determined in a robust way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Loubet, J.M. Georges, O. Marchesini, and G. Meille: Vickers indentation curves of magnesium-oxide (MgO). J. Tribol. 106, 43 (1984).

    Article  CAS  Google Scholar 

  2. J.B. Pethica, R. Hutchings, and W.C. Oliver: Hardness measurement at penetration depths as small as 20 nm. Philos. Mag. A 48, 593 (1983).

    Article  CAS  Google Scholar 

  3. S. Stauss, P. Schwaller, J-L. Bucaille, R. Rabe, L. Rohr, J. Michler, and E. Blank: Determining the stress–strain behaviour of small devices by nanoindentation in combination with inverse methods. Microelectron. Eng. 67–68, 818 (2003).

    Article  CAS  Google Scholar 

  4. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  5. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  6. D. Tabor: The Hardness of Metals (Clarendon Press, Oxford, UK, 1951).

    Google Scholar 

  7. Y.T. Cheng and C.M. Cheng: Scaling approach to conical indentation in elastic-plastic solids with work hardening., J. Appl. Phys. 84, 1284 (1998).

    Article  CAS  Google Scholar 

  8. Y.T. Cheng and C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 (2004).

    Article  Google Scholar 

  9. K.D. Bouzakis, N. Michailidis, and G. Erkens: Thin hard coatings stress-strain curve determination through a FEM supported evaluation of nanoindentation test results. Surf. Coat. Technol. 142, 102 (2001).

    Article  Google Scholar 

  10. J.L. Bucaille, S. Stauss, E. Felder, and J. Michler: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663 (2003).

    Article  CAS  Google Scholar 

  11. N. Chollacoop, M. Dao, and S. Suresh: Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713 (2003).

    Article  CAS  Google Scholar 

  12. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  13. A.E. Giannakopoulos and S. Suresh: Determination of elastoplastic properties by instrumented sharp indentation. Scr. Mater. 40, 1191 (1999).

    Article  CAS  Google Scholar 

  14. N. Huber and C. Tsakmakis: Determination of constitutive properties from spherical indentation data using neural networks. Part I: The case of pure kinematic hardening in plasticity laws. J. Mech. Phys. Solids 47, 1569 (1999).

    Article  Google Scholar 

  15. B. Backes, K. Durst, and M. Goken: Determination of plastic properties of polycrystalline metallic materials by nanoindentation: Experiments and finite element simulations. Philos. Mag. 86, 5541 (2006).

    Article  CAS  Google Scholar 

  16. Y.P. Cao and N. Huber: Further investigation on the definition of the representative strain in conical indentation. J. Mater. Res. 21, 1810 (2006).

    Article  CAS  Google Scholar 

  17. I.S. Choi, M. Dao, and S. Suresh: Mechanics of indentation of plastically graded materials. I: Analysis. J. Mech. Phys. Solids 56, 157 (2008).

    Article  CAS  Google Scholar 

  18. B. Guelorget, M. Francois, C. Liu, and J. Lu: Extracting the plastic properties of metal materials from microindentation tests: Experimental comparison of recently published methods. J. Mater. Res. 22, 1512 (2007).

    Article  CAS  Google Scholar 

  19. X.Q. Qian, Y.P. Cao, and J. Lu: Dependence of the representative strain on the hardening functions of metallic materials in indentation. Scr. Mater. 57, 57 (2007).

    Article  CAS  Google Scholar 

  20. S. Swaddiwudhipong, E. Harsono, J. Hua, and Z.S. Liu: Reverse analysis via efficient artificial neural networks based on simulated Berkovich indentation considering effects of friction. Eng. Comput. 24, 127 (2008).

    Article  Google Scholar 

  21. T.W. Capehart and Y.T. Cheng: Determining constitutive models from conical indentation: Sensitivity analysis. J. Mater. Res. 18, 827 (2003).

    Article  CAS  Google Scholar 

  22. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, and Y.L. Shen: Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55, 4015 (2007).

    Article  CAS  Google Scholar 

  23. H. Lan and T.A. Venkatesh: Determination of the elastic and plastic properties of materials through instrumented indentation with reduced sensitivity. Acta Mater. 55, 2025 (2007).

    Article  CAS  Google Scholar 

  24. H. Lan and T.A. Venkatesh: On the uniqueness and sensitivity issues in determining the elastic and plastic properties of powerlaw hardening materials through sharp and spherical indentation. Philos. Mag. 87, 4671 (2007).

    Article  CAS  Google Scholar 

  25. J.L. Cohon: MultiObjective Programming and Planning (Academic Press, New York, 1978).

    Google Scholar 

  26. J.C. Gilbert: Differentiable Optimization: Theory and Algorithms (INRIA, Roquencourt, France, 1999).

    Google Scholar 

  27. P. Pilvin: Multiscale approach for the prediction of the materials andastic component, Ph.D. Thesis, Universite de Paris VI, France (1983).

    Google Scholar 

  28. M. Bocciarelli and G. Maier: Indentation and imprint mapping method for indentation of residual stresses. Comp. Mater. Sci. 39, 381 (2007).

    Article  CAS  Google Scholar 

  29. S.N. Stauss-Ueno: Assessment of mechanical properties using instrumented indentation and inverse methods, Ph.D. Thesis, EPF Lausanne, Switzerland, (2006).

    Google Scholar 

  30. D.E. Goldberg: Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, MA, 1989).

    Google Scholar 

  31. Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs (Springer-Verlag, Berlin, Germany, 1992).

    Book  Google Scholar 

  32. I. Rechenberg: Evolutionsstrategie: Technical System Optimization from Biological Evolution Principle (Frommann-Holzboog, Stuttgart, Germany, 1973).

    Google Scholar 

  33. K. Zeng and C.H. Chiu: An analysis of laod-penetration curves from instrumented indentation. Acta Mater. 49, 3539 (2001).

    Article  CAS  Google Scholar 

  34. M. Emmerich, A. Giotis, M. Özdemir, T. Bäck, and K. Giannakoglou: Metamodel-assisted evolution strategies, in Parallel Problem Solving from Nature VII, edited by J.J. Merelo Guervss, P. Adamidis, H.G. Bever, J-L. Fernández-Villacañas, and H-P. Schwefel (Springer, Secaucus, NJ, 2002).

    Google Scholar 

  35. ABAQUS—Standard User’s manual version 6.4 (Hibbit, Karlsson and Sorensen Inc., 2002).

  36. J.L. Bucaille, A. Rossoll, B. Moser, S. Stauss, and J. Michler: Determination of the matrix in situ flow stress of a continuous fibre reinforced metal matrix composite using instrumented indentation. Mater. Sci. Eng., A 369, 82 (2004).

    Article  CAS  Google Scholar 

  37. Z. Gronostajski: The constitutive equations for FEM analysis. J. Mater. Process. Technol. 106, 40 (2000).

    Article  Google Scholar 

  38. J.H. Hollomon: Tensile deformation. Trans. Am. Inst. Mining Metall. Eng. 162, 268 (1945).

    Google Scholar 

  39. G. Dieter: Mechanical Metallurgy, 2nd ed. (Mc Graw-Hill, New York, 1976).

    Google Scholar 

  40. J. Lubliner: Plasticity Theory (Macmillan, New York, 1990).

    Google Scholar 

  41. H.W. Swift: Plastic instability under plane stress. J. Mech. Phys. Solids 1, 1 (1952).

    Article  Google Scholar 

  42. W. Ramberg and W.R. Osgood: Description of stress-strain curves by three parameters. National Advisory Committee for Aeronautics, Technical Note 902 (1943).

  43. Python Software Foundation (www.python.org, 2005).

  44. J.H. Holland: Outline for a logical theory of adaptive systems. J. Assoc. Computing Machinery 9, 297 (1962).

    Article  Google Scholar 

  45. H-P. Schwefel: Numerical Optimization of Computer Models, 2nd ed. (JohnWiley and Sons, New York, 1995).

    Google Scholar 

  46. L.J. Fogel: On the organization of intellect, Ph.D. Dissertation, UCLA, CA, (1964).

    Google Scholar 

  47. N. Cramer: A representation for the adaptive generation of simple sequential programs, in Genetic Algorithms and the Applications, edited by J. Grefenstette (Lawrence Erlbaum Associates, Mahwah, NJ, 1985), p. 183.

    Google Scholar 

  48. T. Bäck, D. Fogel, and Z. Michalewicz: Handbook of Evolutionary Computation (Oxford University Press, Oxford, UK, 1997).

    Book  Google Scholar 

  49. S. Sakata, F. Ashida, and M. Zako: Structural optimization using Kriging approximation. Comput. Methods Appl. Mech. Eng. 192, 923 (2003).

    Article  Google Scholar 

  50. O. Ghouati and J.C. Gelin: Gradient based methods, genetic algorithms and the finite element method for the identification of material parameters, in Simulation of Materials Processing: Theory, Methods and Applications, edited by J. Huétink and F.P.T. Baaijens (A.A. Balkema, Rotterdam, The Netherlands, 1998), p. 157.

    Google Scholar 

  51. J. Alcalá, A.C. Barone, and M. Anglada: The influence of plastic hardening on surface deformation modes around Vickers and spherical indents. Acta Mater. 48, 3451 (2000).

    Article  Google Scholar 

  52. M.M. Chaudhri and M. Winter: The load-bearing area of a hardness indentation. J. Phys. D 21, 370 (1988).

    Article  CAS  Google Scholar 

  53. R. Hill, B. Storakers, and A. Zdunek: A theoretical study of the Brinell hardness test. Proc. R. Soc. London A 423, 301 (1989).

    Article  CAS  Google Scholar 

  54. X.Y. Feng and T.C. Wang: Scaling functions in conical indentation of elastic-plastic solids. Acta Mech. 196, 245 (2008).

    Article  Google Scholar 

  55. X-L. Gao, X.N. Jing, and G. Subhash: Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. Int. J. Solids Struct. 43, 2193 (2006).

    Article  Google Scholar 

  56. W. Zielinski, H. Huang, and W.W. Gerberich: Microscopy and microindentation mechanics of single crystal Fe–3 wt.% Si: Part II. TEM of the indentation plastic zone. J. Mater. Res. 8, 1300 (1993).

    Article  CAS  Google Scholar 

  57. J.W. Harding and I.N. Sneddon: The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch. Proc. Camb. Philol. Soc. 41, 16 (1945).

    Article  Google Scholar 

  58. A.E.H. Love: Boussinesq’s problem for a rigid cone. Q. J. Math. 10, 161 (1939).

    Article  Google Scholar 

  59. I.N. Sneddon: The relation between load and penetration in the axisymmetric Bossinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  60. K.K. Tho, S. Swaddiwudhipong, Z.S. Liu, K. Zheng, and J. Hua: Uniqueness of reverse analysis from conical indentation tests. J. Mater. Res. 19, 2498 (2004).

    Article  CAS  Google Scholar 

  61. J.L. Bucaille, S. Stauss, P. Schwaller, and J. Michler: A new technique to determine the elastic properties of thin metallic films using sharp indenters. Thin Solid Films 447–448, 239 (2004).

    Article  CAS  Google Scholar 

  62. S. Swaddiwudhipong, K.K. Tho, Z.S. Liu, and K. Zeng: Material characterization based on dual indenters. Int. J. Solids Struct. 42, 69 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyrot, I., Bouchard, P.O., Ghisleni, R. et al. Determination of plastic properties of metals by instrumented indentation using a stochastic optimization algorithm. Journal of Materials Research 24, 936–947 (2009). https://doi.org/10.1557/jmr.2009.0118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0118

Navigation