Skip to main content
Log in

Influence of specimen preparation, microstructure anisotropy, and residual stresses on stress–strain curves of rolled Al2024 T351 as derived from spherical indentation tests

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present work, a previously developed neural network approach for analyzing spherical indentation experiments is applied to prestressed specimens to determine the effect of residual stresses on the identified stress–strain curves. Within this scope, a comparison to other measurement errors has been made, which are caused by surface preparation and anisotropy of the material. To validate the experimental and analysis approach, the effect of compressive and tensile prestresses was also simulated using a three-dimensional finite element model. The material investigated is a rolled 2024 T351, which is widely used for manufacturing airplanes. It is shown that the existing neural network approach is able to determine the stress–strain behavior in agreement with that obtained from tensile tests. The method is robust against most error sources, such as surface roughness, coarse grain structure, and anisotropy, if a sufficient number of experiments are available. The most important influencing factor can be the residual stress causing errors up to 20% in the identified stress–strain curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Motarjemi, M. Kocak, and V. Ventzke: Mechanical and fracture characterization of a bi-material steel plate. Int. J. Press. Vessels. Pip. 79, 181 (2002).

    Article  Google Scholar 

  2. S.T. Amancio, S. Sheikhi, J.F. dos Santos, and C. Bolfarini: Preliminary study of the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium 2024-T351 and 6056-T4. J. Mater. Process. Technol. 206, 132 (2008).

    Article  Google Scholar 

  3. U. Ceyhan: High Temperature Deformation and Fracture Assessment of Similar Steel Welds (Clausthal-Zellerfeld, Papierflieger, 2007). Available at: http://www.gbv.de/dms/clausthal/E_DISS/2007/db108543.pdf.

    Google Scholar 

  4. J.S. Field and M.V. Swain: Determining the mechanical properties of small volumes of material from sub micro indenter spherical indentations. J. Mater. Res. 10, 101 (1995).

    Article  CAS  Google Scholar 

  5. B. Taljat and T. Zacharia: New analytical procedure to determine stress-strain curve from spherical indentation data. Int. J. Solids Struct. 35(33), 4411 (1998).

    Article  Google Scholar 

  6. S. Kucharski and Z. Mroz: Identification of plastic hardening parameters of metals from spherical indentation tests. Mater. Sci. Eng. 318(1–2), 65 (2001).

    Article  Google Scholar 

  7. S. Kucharski and Z. Mroz: Identification of hardening parameters of metals from spherical indentation test., J. Eng. Mater. Technol. 123, 245 (2004).

    Article  Google Scholar 

  8. M. Zhao, N. Ogasawara, N. Chiba, and X. Chen: A new approach to measure—Elastic-plastic properties of bulk materials using spherical indentation. Acta Mater. 54, 23 (2006).

    Article  CAS  Google Scholar 

  9. Y. Cao, X. Qian, and N. Huber: Spherical indentation into elasto-plastic materials: Indentation-response based definitions of representative strain. Mater. Sci. Eng., A 454–455, 1 (2007).

    Article  Google Scholar 

  10. X. Chen, N. Ogahisa, M. Zaho, and N. Chiba: On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mysical materials. J. Mech. Phys. Solids 55(8), 1618 (2007).

    Article  Google Scholar 

  11. N. Huber and Ch. Tsakmakis: A new loading history for identification of viscoplastic properties by spherical indentation. J. Mater. Res. 19(1), 101 (2004).

    Article  CAS  Google Scholar 

  12. E. Tyulyukovskiy and N. Huber: Identification of viscoplastic material parameters from spherical indentation data: Part I. Neural networks. J. Mater. Res. 21(3), 664 (2006).

    Article  CAS  Google Scholar 

  13. D. Klötzer, Ch. Ullner, E. Tyulyukovskiy, and N. Huber: Identification of viscoplastic material parameters from spherical indentation data: Part II. Experimental validation of the method. J. Mater. Res. 21(3), 677 (2006).

    Article  Google Scholar 

  14. E. Tyulyukovskiy and N. Huber: Neural networks for tip correction of spherical indentation curves from bulk metals and thin films. J. Mech. Phys. Solids 55, 391 (2007).

    Article  CAS  Google Scholar 

  15. N. Huber, E. Tyulyukovskiy, H-C. Schneider, R. Rolli, and M. Weick: An indentation system for determination of viscoplastic stress-strain behaviour of small metal volumes before and after irradiation. J. Nucl. Mater. 377, 352 (2008).

    Article  CAS  Google Scholar 

  16. G. Sines and R. Carlson: Hardness measurements for determination of residual stresses. ASTM Bull. 180, 35 (1952).

    Google Scholar 

  17. F.H. Vitovec: Stress and load dependence of microindentation hardness. ASTM Spec. Publ. 889, 175 (1985).

    Google Scholar 

  18. T.Y. Tsui, W.C. Oliver, and G.M. Pharr: Influence of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminium alloy. J. Mater. Res. 11(3), 752 (1996).

    Article  CAS  Google Scholar 

  19. C.M. Lepienski, G.M. Pharr, Y.J. Park, T.R. Watkins, A. Misra, and X. Zhang: Factors limiting the measurement of residual stresses in thin films by nanoindentation. Thin Solid Films 447–448, 251 (2004).

    Article  Google Scholar 

  20. J.G. Swadener, B. Taljat, and G.M. Pharr: Measurement of residual stress by load and depth-sensing indentation with spherical indenters. J. Mater. Res. 16, 2091 (2001).

    Article  CAS  Google Scholar 

  21. J.H. Underwood: Residual stress measurement using surface displacement around an indentation. Exp. Mech. 30, 373 (1973).

    Article  Google Scholar 

  22. S. Suresh and A.E. Giannakopoulos: A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46(16), 5755 (1998).

    Article  CAS  Google Scholar 

  23. S. Carlsson and P. L. Larsson: On the determination of residual stress and strain fields by sharp indentation testing. Part I: Theoretical and numerical analysis. Acta Mater. 49 (12), 2179 (2001).

    Article  CAS  Google Scholar 

  24. S. Carlsson and P.L. Larsson: On the determination of residual stress and strain fields by sharp indentation testing. Part II: Experimental investigation. Acta Mater. 49 (12), 2193 (2001).

    Article  CAS  Google Scholar 

  25. G. Quan, J. Heerens, and W. Brocks: Distribution of constituent particles in thick plate of Al-T351. Practical Metallogaphy 6, 304 (2004).

    Google Scholar 

  26. Testing Machines and Systems for Metals (brochure). Available at: http://www.zwick.com/frame/Control.php?action=Frame,show&mainNavId=11.

  27. E. Tyulyukovskiy: Identification of mechanical properties of metallic materials from indentation tests. Ph.D. Thesis, FZKA-Report 7103, March (2005). Available at: http://bibliothek.fzk.de/zb/berichte/FZKA7103.pdf.

    Google Scholar 

  28. N. Huber and J. Heerens: On the effect of a general residual stress state on indentation and hardness testing. Acta Mater. 56, 6205 (2008).

    Article  CAS  Google Scholar 

  29. E. Kreysig: Statistical Methods and Their Application (Vandenhoeck & Ruprecht, Göttingen, Germany, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Heerens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heerens, J., Mubarok, F. & Huber, N. Influence of specimen preparation, microstructure anisotropy, and residual stresses on stress–strain curves of rolled Al2024 T351 as derived from spherical indentation tests. Journal of Materials Research 24, 907–917 (2009). https://doi.org/10.1557/jmr.2009.0116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0116

Navigation