Skip to main content
Log in

Indentation strength of a piezoelectric ceramic: Experiments and simulations

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The spherical indentation strength of a lead zirconate titanate (PZT) piezoelectric ceramic was investigated under poled and unpoled conditions and with different electrical boundary conditions (arising through the use of insulating or conducting indenters). Experimental results show that the indentation strength of the poled PZT is higher than that of the unpoled PZT. The strength of a poled PZT under a conducting indenter is higher than that under an insulating indenter. Poling direction (with respect to the direction of indentation loading) did not significantly affect the strength of material. Complementary finite element analysis (FEA) of spherical indentation of an elastic, linearly coupled piezoelectric half-space is conducted for rationalizing the experimental observations. Simulations show marked dependency of the contact stress on the boundary conditions. In particular, contact stress redistribution in the coupled problem leads to a change in the fracture initiation, from Hertzian cracking in the unpoled material to subsurface damage initiation in poled PZT. These observations help explain the experimental ranking of strength the PZT in different material conditions or under different boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. McMeeking: A J-integral for the analysis of electrically induced mechanical stress at cracks in elastic dielectrics. Int. J. Eng. Sci. 28, 605 (1990).

    Article  CAS  Google Scholar 

  2. Y.E. Pak: Crack extension force in a piezoelectric material. Trans. ASME J. Appl. Mech. 57, 647 (1990).

    Article  Google Scholar 

  3. Y. Shindo, E. Ozawa, and J.P. Nowacki: Singular stress and electric fields of a cracked piezoelectric strip. Appl. Electromag. Mater. 1, 77 (1990).

    Google Scholar 

  4. H.A. Sosa: Plane problems in piezoelectric media with defects. Int. J. Solids Struct. 28, 491 (1991).

    Article  Google Scholar 

  5. Z. Suo, C.M. Kuo, D.M. Barnett, and J.R. Willis: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739 (1992).

    Article  Google Scholar 

  6. Z. Suo: Models for breakdown-resistant dielectric and ferroelectric ceramics. J. Mech. Phys. Solids 41, 1155 (1993).

    Article  Google Scholar 

  7. T.Y. Zhang: Effects of static electric field on the fracture behavior of piezoelectric ceramics. Acta Mech. Sin. 18, 537 (2002).

    Article  Google Scholar 

  8. T.Y. Zhang and C.F. Gao: Fracture behaviors in piezoelectric solids. Theor. Appl. Fract. Mech. 41, 339 (2004).

    Article  CAS  Google Scholar 

  9. M.S. Zarnik, D. Belavic, and S. Macek: Evaluation of the constitutive material parameters for the numerical modeling of structures with lead–zirconate–titanate thick films. Sens. Actuators, A 136, 618 (2007).

    Article  CAS  Google Scholar 

  10. A. Makagon, M. Kachanov, S.V. Kalinin, and E. Karapetian: Indentation of spherical and conical punches into piezoelectric half-space with frictional sliding: Applications to scanning-probe microscopy. Phys. Rev. B 76, 064115 (2007).

    Article  Google Scholar 

  11. F. Yang: Analysis of the axisymmetric indentation of a semiinfinite piezoelectric material: The evaluation of the contact stiffness and the effective piezoelectric constant. J. Appl. Phys. 103, 074115 (2008).

    Article  Google Scholar 

  12. U. Ramamurty and M.C. Kumaran: Mechanical property extraction through conical indentation of a closed-cell aluminum foam. Acta Mater. 52, 181 (2004).

    Article  CAS  Google Scholar 

  13. S. Jana, R. Bhowmick, Y. Kawamura, K. Chattopadhyay, and U. Ramamurty: Deformation morphology underneath the Vickers indent in a Zr-based bulk metallic glass. Intermetallics 12, 1097 (2004).

    Article  CAS  Google Scholar 

  14. S. Ramachandra, P. Sudheer Kumar, and U. Ramamurty: Impact energy absorption in an Al foam at low velocities. Scr. Mater. 49, 741 (2003).

    Article  CAS  Google Scholar 

  15. S.J. Matysiak: Axisymmetric problem of punch pressing into a piezoelectric half-space. Bull. Polish Acad. Techn. Sci. 33, 25 (1985).

    Google Scholar 

  16. H.A. Sosa and M.A. Castro: On concentration load at boundary of a piezoelectric half-plane. J. Mech. Phys. Solids 42, 1105 (1994).

    Article  Google Scholar 

  17. H. Fan, K.Y. Sze, and W. Yang: Two dimensional contact on a piezoelectric half-space. Int. J. Solids Struct. 33, 1305 (1996).

    Article  Google Scholar 

  18. Wei-qiu Chen: On piezoelectric contact problem for a smooth punch. Int. J. Solids Struct. 37, 2331 (2000).

    Article  Google Scholar 

  19. A.E. Giannakopoulos and S. Suresh: Theory of indentation of piezoelectric materials. Acta Mater. 47, 2153 (1999).

    Article  CAS  Google Scholar 

  20. U. Ramamurty, S. Sridhar, A.E. Giannakopulous, and S. Suresh: Experimental study of spherical indentation on piezoelectric materials. Acta Mater. 47, 2417 (1999).

    Article  CAS  Google Scholar 

  21. S. Sridhar, A.E. Giannakopoulos, S. Suresh, and U. Ramamurty: Electric response during indentation of piezoelectric materials: A new method for materials characterization. J. Appl. Phys. 85, 380 (1999).

    Article  CAS  Google Scholar 

  22. W. Chen and H. Ding: Indentation of a transversely isotropic piezoelectric half-space by a rigid sphere. Acta Mech. Solid. Sin. 12, 114 (1999).

    CAS  Google Scholar 

  23. M. Deluca, C. Galassi, and G. Pezzotti: Residual stresses in PZT investigated by polarized Raman piezospectroscopy. Ferroelectrics Lett. 32, 31 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Ramamurty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamble, S.N., Kubair, D.V. & Ramamurty, U. Indentation strength of a piezoelectric ceramic: Experiments and simulations. Journal of Materials Research 24, 926–935 (2009). https://doi.org/10.1557/jmr.2009.0115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0115

Navigation