Skip to main content
Log in

Molecular dynamics study of crystal plasticity during nanoindentation in Ni nanowires

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations were performed to gain fundamental insight into crystal plasticity, and its size effects in nanowires deformed by spherical indentation. This work focused on <111>-oriented single-crystal, defect-free Ni nanowires of cylindrical shape with diameters of 12 and 30 nm. The indentation of thin films was also comparatively studied to characterize the influence of free surfaces in the emission and absorption of lattice dislocations in single-crystal Ni. All of the simulations were conducted at 300 K by using a virtual spherical indenter of 18 nm in diameter with a displacement rate of 1 m·s−1. No significant effect of sample size was observed on the elastic response and mean contact pressure at yield point in both thin films and nanowires. In the plastic regime, a constant hardness of 21 GPa was found in thin films for penetration depths larger than 0.8 nm, irrespective of variations in film thickness. The major finding of this work is that the hardness of the nanowires decreases as the sample diameter decreases, causing important softening effects in the smaller nanowire during indentation. The interactions of prismatic loops and dislocations, which are emitted beneath the contact tip, with free boundaries are shown to be the main factor for the size dependence of hardness in single-crystal Ni nanowires during indentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tian, J. Wang, J. Kurtz, T.E. Mallouk, and M.H.W. Chan: Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett. 3, 919 (2003).

    Article  CAS  Google Scholar 

  2. J.J. Mock, S.J. Oldenburg, D.R. Smith, D.A. Schultz, and S. Schultz: Composite plasmon resonant nanowires. Nano Lett. 2, 465 (2002).

    Article  CAS  Google Scholar 

  3. A. Husain, J. Hone, H.W.Ch. Postma, X.M.H. Huang, T. Drake, M. Barbic, A. Scherer, and M.L. Roukes: Nanowire-based very-high-frequency electromechanical resonator. Appl. Phys. Lett. 83, 1240 (2003).

    Article  CAS  Google Scholar 

  4. L.A. Bauer, N.S. Birenbaum, and G.J. Meyer: Biological applications of high aspect ratio nanoparticles. J. Mater. Chem. 14, 517 (2004).

    Article  CAS  Google Scholar 

  5. C.J. Barrelet, A.B. Greytak, and C.M. Lieber: Nanowire photonic circuit elements. Nano Lett. 4, 1981 (2004).

    Article  CAS  Google Scholar 

  6. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).

    Article  CAS  Google Scholar 

  7. J. Greer, W.C. Oliver, and W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).

    Article  CAS  Google Scholar 

  8. B. Wu, A. Heidelberg, and J.J. Boland: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525 (2005).

    Article  CAS  Google Scholar 

  9. D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy: Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065 (2005).

    Article  CAS  Google Scholar 

  10. J.R. Greer and W.D. Nix: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B: Condens. Matter 73, 245410 (2006).

    Article  CAS  Google Scholar 

  11. C.A. Volkert and E.T. Lilleodden: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006).

    Article  CAS  Google Scholar 

  12. H. Tang, K.W. Schwarz, and H.D. Espinosa: Dislocation escaperelated size effects in single-crystal micropillars under uniaxial compression. Acta Mater. 55, 1607 (2007).

    Article  CAS  Google Scholar 

  13. Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, and A.M. Minor: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).

    Article  CAS  Google Scholar 

  14. G. Stan, C.V. Ciobanu, P.M. Parthangal, and R.F. Cook: Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett. 7, 3691 (2007).

    Article  CAS  Google Scholar 

  15. M. Lucas, A.M. Leach, M.T. McDowell, S.E. Hunyadi, K. Gall, C.J. Murphy, and E. Riedo: Plastic deformation of pentagonal silver nanowires: Comparison between AFM nanoindentation and atomistic simulations. Phys. Rev. B: Condens. Matter 77, 245420 (2008).

    Article  CAS  Google Scholar 

  16. D. Lee, M. Zhao, X. Wei, X. Chen, S.C. Jun, J. Hone, E.G. Herbert, W.C. Oliver, and J.W. Kysar: Observation of plastic deformation in freestanding single crystal Au nanowires. Appl. Phys. Lett. 89, 111916 (2006).

    Article  CAS  Google Scholar 

  17. X. Li, H. Gao, C.J. Murphy, and K.K. Caswell: Nanoindentation of silver nanowires. Nano Lett. 3, 1495 (2003).

    Article  CAS  Google Scholar 

  18. G. Feng, W.D. Nix, Y. Yoon, and C.J. Lee: A study of the mechanical properties of nanowires using nanoindentation. J. Appl. Phys. 99, 074304 (2006).

    Article  CAS  Google Scholar 

  19. X. Tao and X. Li: Catalyst-free synthesis, structural, and mechanical characterization of twinned Mg2B2O5 nanowires. Nano Lett. 8, 505 (2008).

    Article  CAS  Google Scholar 

  20. H. Zhang, J. Tang, L. Zhang, B. An, and L.C. Qin: Atomic force microscopy measurement of the Young’s modulus and hardness of single LaB6 nanowires. Appl. Phys. Lett. 92, 173121 (2008).

    Article  CAS  Google Scholar 

  21. S. Bansal, E. Toimil-Molares, A. Saxena, and R.R. Tummala: Nanoindentation of single crystal and polycrystalline copper nanowires. Elec. Comp. Tech. Conf. 1, 71 (2005).

    Google Scholar 

  22. T.H. Fang and W.J. Chang: Nanolithography and nanoindentation of tantalum-oxide nanowires and nanodots using scanning-probe microscopy. Physica B (Amsterdam) 352, 190 (2004).

    Article  CAS  Google Scholar 

  23. E. Rabkin and D.J. Srolovitz: Onset of plasticity in gold nanopillar compression. Nano Lett. 7, 101 (2007).

    Article  CAS  Google Scholar 

  24. E. Rabkin, H-S. Nam, and D.J. Srolovitz: Atomistic simulation of the deformation of gold nanopillars. Acta Mater. 55, 2085 (2007).

    Article  CAS  Google Scholar 

  25. K.A. Afanasyev and F. Sansoz: Strengthening in gold nanopillars with nanoscale twins. Nano Lett. 7, 2056 (2007).

    Article  CAS  Google Scholar 

  26. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).

    Article  CAS  Google Scholar 

  27. A. Cao and E. Ma: Sample shape and temperature strongly influence the yield strength of metallic nanopillars. Acta Mater. 56, 4816 (2008).

    Article  CAS  Google Scholar 

  28. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B: Condens. Matter 59, 3393 (1999).

    Article  CAS  Google Scholar 

  29. E.T. Lilleodden, J.A. Zimmerman, S.M. Foiles, and W.D. Nix: Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901 (2003).

    Article  CAS  Google Scholar 

  30. D. Feichtinger, P.M. Derlet, and H. Van Swygenhoven: Atomistic simulations of spherical indentations in nanocrystalline gold. Phys. Rev. B: Condens. Matter 67, 024113 (2003).

    Article  CAS  Google Scholar 

  31. G.J. Ackland and A.P. Jones: Applications of local crystal structure measures in experiment and simulation. Phys. Rev. B: Condens. Matter 73, 054104 (2006).

    Article  CAS  Google Scholar 

  32. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).

    Book  Google Scholar 

  33. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials (Prentice Hall, Upper Saddle River, NJ, 1999).

    Google Scholar 

  34. J. Li: AtomEye: An efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11, 173 (2003).

    Article  Google Scholar 

  35. H. Liang, M. Upmanyu, and H. Huang: Size-dependent elasticity of nanowires: Nonlinear effects. Phys. Rev. B: Condens. Matter 71, 241403 (2005).

    Article  CAS  Google Scholar 

  36. S. Cuenot, C. Frétigny, S. Demoustier-Champagne, and B. Nysten: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B: Condens. Matter 69, 165410 (2004).

    Article  CAS  Google Scholar 

  37. A.K. Nair, E. Parker, P. Gaudreau, D. Farkas, and R.D. Kriz: Size effects in indentation response of thin films at the nanoscale: A molecular dynamics study. Int. J. Plast. 24, 2016 (2008).

    Article  CAS  Google Scholar 

  38. J. Li, K.J. Van Vliet, T. Zhu, S. Yip, and S. Suresh: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307 (2002).

    Article  CAS  Google Scholar 

  39. Y. Choi, K.J. Van Vliet, J. Li, and S. Suresh: Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines. J. Appl. Phys. 94, 6050 (2003).

    Article  CAS  Google Scholar 

  40. Y.A.M. Soifer, A. Verdyan, M. Kazakevich, and E. Rabkin: Edge effect during nanoindentation of thin copper films. Mater. Lett. 59, 1434 (2005).

    Article  CAS  Google Scholar 

  41. A.M. Minor, J.W. Morris Jr., and E.A. Stach: Quantitative in situ nanoindentation in an electron microscope. Appl. Phys. Lett. 79, 1625 (2001).

    Article  CAS  Google Scholar 

  42. Y. Choi and S. Suresh: Nanoindentation of patterned metal lines on a Si substrate. Scr. Mater. 48, 249 (2003).

    Article  CAS  Google Scholar 

  43. B. Hyde, H.D. Espinosa, and D. Farkas: An atomistic investigation of elastic and plastic properties of Au nanowires. JOM 57, 62 (2005).

    Article  CAS  Google Scholar 

  44. F. Bedoui, F. Sansoz, and N.S. Murthy: Incidence of nanoscale heterogeneity on the nanoindentation of a semicrystalline polymer: Experiments and modeling. Acta Mater. 56, 2296 (2008).

    Article  CAS  Google Scholar 

  45. S.J. Plimpton: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sansoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupont, V., Sansoz, F. Molecular dynamics study of crystal plasticity during nanoindentation in Ni nanowires. Journal of Materials Research 24, 948–956 (2009). https://doi.org/10.1557/jmr.2009.0103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0103

Navigation