Skip to main content
Log in

Substrate-affected indentation contact parameters of elastoplastic coating/substrate composites

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In coating/substrate bilayer systems, the indentation contact behavior transitionally varies from coatinglike to substratelike behaviors. Spatial confinement effects of the substrate induce very complicated plastic flows in the coating beneath the indenter, leading to a crucial difficulty that is not accounted for by any of the present quantitative analytical/ theoretical predictions for the substrate-affected contact hardness. In this work, the author presents finite-element-based studies on the elastoplastic indentation contact mechanics of coating/substrate systems. The effect of the substrate is taken into account by introducing the spatially variable elastic modulus and the yield stress; this approach quantitatively describes the substrate-affected stress/strain field in the spatially localized area beneath the indenter. The elastoplastic constitutive relationship of the contact hardness for semi-infinite homogeneous bulks combined with these spatially variable material characteristics are successfully applied to analytically as well as quantitatively predict the substrate-affected contact hardness of bilayer composite systems having wide ranges of elastoplastic coating/substrate characteristics. The experimental procedures for determining the elastic/plastic parameters both of the coating and the substrate are also discussed, in which the importance of the experimental determination of substrate-affected indentation contact radius/area is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  2. A.K. Bhattacharya and W.D. Nix: Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates. Int. J. Solids Struct. 24, 1287 (1988).

    Article  Google Scholar 

  3. H.Y. Yu, S.C. Sanday, and B.B. Rath: The effect of substrate on the elastic properties of films determined by the indentation test—Axisymmetric Boussinesq problem. Mech. Phys. Solids 38, 745 (1990).

    Article  Google Scholar 

  4. H. Gao, C-H. Chiu, and J. Lee: Elastic contact versus indentation modeling of multi-layered materials. Int. J. Solids Struct. 29, 2471 (1992).

    Article  Google Scholar 

  5. N.G. Chechemin, J. Bøttingen, and J.P. Krong: Nanoindentation of amorphous aluminum oxide film I. The influence of the substrate on the plastic properties. Thin Solid Films 261, 219 (1995).

    Article  Google Scholar 

  6. J. Menčík, D. Munz, E. Quandt, and E.R. Weppelmann: Determination of elastic modulus of thin layers using nanoindentation. J. Mater. Res. 12, 2475 (1997).

    Article  Google Scholar 

  7. T.Y. Tsui, J.J. Vlassak, and W.D. Nix: Indentation plastic displacement field, Part I and II. J. Mater. Res. 14, 2196 (1999).

    Article  CAS  Google Scholar 

  8. W.W. Gerberich, A. Strozny, K. Yoder, and L-S. Cheng: Hard protective overlayers on viscoelastic-plastic substrates. J. Mater. Res. 14, 2210 (1999).

    Article  CAS  Google Scholar 

  9. T. Sawa, Y. Akiyama, A. Shimamoto, and K. Tanaka: Nanoindentation of a 10 nm thick thin film. J. Mater. Res. 14, 2228 (1999).

    Article  CAS  Google Scholar 

  10. Y.Y. Lim, M.M. Chaudhri, and Y. Enomoto: Accurate determination of the mechanical properties of thin aluminum films deposited on sapphire flats using nanoindentations. J. Mater. Res. 14, 2314 (1999).

    Article  CAS  Google Scholar 

  11. J. Malzbender, G. de With, and J.M.J. den Toonder: Determination of the elastic modulus and hardness of sol-gel coatings on glass; influence of indenter geometry. Thin Solid Films 372, 134 (2000).

    Article  CAS  Google Scholar 

  12. X. Chen and J.J. Vlassak: Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 16, 2974 (2000).

    Article  Google Scholar 

  13. R. Saha and W.D. Nix: Effect of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).

    Article  CAS  Google Scholar 

  14. F. Yang: Thickness effect on the indentation of an elastic layer. Mater. Sci. Eng., A 358, 226 (2003).

    Article  Google Scholar 

  15. C-H. Hsueh and P. Miranda: Master curves for Hertzian indentation on coating/substrate systems. J. Mater. Res. 19, 94 (2004).

    Article  CAS  Google Scholar 

  16. C-H. Hsueh and P. Miranda: Combined empirical-analytical method for determining contact radius and indenter displacement during Hertzian indentation on coating/substrate systems. J. Mater. Res. 19, 2774 (2004).

    Article  CAS  Google Scholar 

  17. Y-G. Jung, B.R. Lawn, M. Martyniuk, H. Huang, and X.Z. Hu: Evaluation of elastic modulus and hardness of thin films by nanoindentation. J. Mater. Res. 19, 3076 (2004).

    Article  CAS  Google Scholar 

  18. Z-H. Xu and D. Rowcliffe: Finite element analysis of substrate effects on indentation behavior of thin films. Thin Solid Films 447–448, 399 (2004).

    Article  Google Scholar 

  19. C.Y. Zhang, Y.W. Zhang, and K.Y. Zeng: Extracting the mechanical properties of a viscoelastic polymeric film on a hard elastic substrate. J. Mater. Res. 19, 3053 (2004).

    Article  CAS  Google Scholar 

  20. M. Sakai, J. Zhang, and A. Matsuda: Elastic deformation of coating/substrate composite in axisymmetric indentation. J. Mater. Res. 20, 2173 (2005).

    Article  CAS  Google Scholar 

  21. M. Sakai, M. Sasaki, and A. Matsuda: Indentation stress relaxation of sol-gel-derived organic/inorganic hybrid coating. Acta Mater. 53, 4455 (2005).

    Article  CAS  Google Scholar 

  22. M. Sakai: Elastic and viscoelastic contact mechanics of coating/substrate composites in axisymmetric indentation. Philos. Mag. A 86, 5607 (2006).

    Article  CAS  Google Scholar 

  23. S.M. Han, R. Saha, and W.D. Nix: Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation. Acta Mater. 54, 1571 (2006).

    Article  CAS  Google Scholar 

  24. H. Pelletier, J. Krier, and P. Mille: Characterization of mechanical properties of thin films using nanoindentation test. Mech. Mater. 38, 1182 (2006).

    Article  Google Scholar 

  25. S. Shimizu, T. Yanagimoto, and M. Sakai: The pyramidal indentation load-depth curve of viscoelastic materials. J. Mater. Res. 14, 4075 (1999).

    Article  CAS  Google Scholar 

  26. M. Sakai and S. Shimizu: Indentation rheometry for glass forming materials. J. Non-Cryst. Solids 282, 236 (2001).

    Article  CAS  Google Scholar 

  27. M. Sakai: Time-dependent viscoelastic relation between load and penetration for an axisymmetric indenter. Philos. Mag. A 82, 1841 (2002).

    Article  CAS  Google Scholar 

  28. M. Sakai, S. Shimizu, and S. Ito: Viscoelastic indentation of silicate glasses. J. Am. Ceram. Soc. 85, 1210 (2002).

    Article  CAS  Google Scholar 

  29. M. Sakai: The Meyer hardness; A measure for plasticity?J. Mater. Res. 14, 3630 (1999).

    Article  CAS  Google Scholar 

  30. K.L. Johnson: Contact Mechanics, Chap. 6 (Cambridge University Press, Cambridge, UK, 1985).

    Book  Google Scholar 

  31. ANSYS Academic Research, Release V. 10.0, ANSYS Inc. Canonsburg, PA.

  32. M. Sakai, T. Akatsu, S. Numata, and K. Matsuda: Linear strain hardening in elastoplastic indentation contact. J. Mater. Res. 18, 2087 (2003).

    Article  CAS  Google Scholar 

  33. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  34. D. Maugis: Contact, Adhesion and Rupture of Elastic Solids, Chap. 4 (Springer, Berlin, Germany, 2000).

    Book  Google Scholar 

  35. J.C. Hay, A. Bolshakov, and G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 (1993).

    Article  Google Scholar 

  36. M. Sakai: Energy principle of the indentation induced inelastic surface deformation and hardness of brittle ceramics. Acta Metall. Mater. 41, 1751 (1993).

    Article  CAS  Google Scholar 

  37. T. Miyajima and M. Sakai: Optical indentation microscope—A new family of instrumented indentation testing. Philos. Mag. A 80, 5729 (2006).

    Article  Google Scholar 

  38. M. Sakai, N. Hakiri, and T. Miyajima: Instrumented indentation microscope: A powerful tool for the mechanical characterization in microscales. J. Mater. Res. 21, 2298 (2006).

    Article  CAS  Google Scholar 

  39. C.G.N. Pelletier, J.M.J. den Toonder, L.E. Govaert, N. Hakiri, and M. Sakai: Quantitative assessment and prediction of the contact area developed during spherical tip indentation of glassy polymers. Philos. Mag. 88, 1291 (2008).

    Article  CAS  Google Scholar 

  40. N. Hakiri, A. Matsuda, and M. Sakai: Instrumented indentation microscope applied to elastoplastic indentation contact mechanics of film/substrate composites. J. Mater. Res. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mototsugu Sakai.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-policy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, M. Substrate-affected indentation contact parameters of elastoplastic coating/substrate composites. Journal of Materials Research 24, 831–843 (2009). https://doi.org/10.1557/jmr.2009.0102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0102

Navigation