Skip to main content
Log in

Indentation-induced two-way shape memory surfaces

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A method is described for the creation of surfaces with cyclically reversible topographical form. Using spherical and cylindrical indenters applied to NiTi shapememory alloys, an indentation-planarization technique is shown to result in a two-way shape memory effect that can drive flat-to-wavy surface transitions on changing temperature. First, it is shown that deep spherical indents, made in martensitic NiTi, exhibit pronounced two-way cyclic depth changes. After planarization, these two-way cyclic depth changes are converted to reversible surface protrusions, or “exdents.” Both indent depth changes and cyclic exdent amplitudes can be related to the existence of a subsurface deformation zone in which indentation has resulted in plastic strains beyond that which can be accomplished by martensite detwinning reactions. Cylindrical indentation leads to two-way displacements that are about twice as large as that for the spherical case. This is shown to be due to the larger deformation zone under cylindrical indents, as measured by incremental grinding experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.Y. Ni, Y.T. Cheng, and D.S. Grummon: Recovery of microindents in a nickel-titanium shape-memory alloy: A “selfhealing” effect. Appl. Phys. Lett. 80, 3310 (2002).

    Article  CAS  Google Scholar 

  2. W.Y. Ni, Y.T. Cheng, and D.S. Grummon: Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions. Appl. Phys. Lett. 82, 2811 (2003).

    Article  CAS  Google Scholar 

  3. R. Liu, D.Y. Li, Y.S. Xie, R. Llewellyn, and H.M. Hawthorne: Indentation behavior of pseudoelastic TiNi alloy. Scr. Mater. 41, 691 (1999).

    Article  CAS  Google Scholar 

  4. F.T. Cheng, P. Shi, and H.C. Man: Correlation of cavitation erosion resistance with indentation-derived properties for a NiTi alloy. Scr. Mater. 45, 1083 (2001).

    Article  CAS  Google Scholar 

  5. K. Gall, K. Juntunen, H.J. Maier, H. Sehitoglu, and Y.I. Chumlyakov: Instrumented micro-indentation of NiTi shape-memory alloys. Acta Mater. 49, 3205 (2001).

    Article  CAS  Google Scholar 

  6. G.A. Shaw, D.S. Stone, A.D. Johnson, A.B. Ellis, and W.C. Crone: Shape memory effect in nanoindentation of nickel-titanium thin films. Appl. Phys. Lett. 83, 257 (2003).

    Article  CAS  Google Scholar 

  7. X.G. Ma and K. Komvopoulos: Nanoscale pseudoelastic behavior of indented titanium-nickel films. Appl. Phys. Lett. 83, 3773 (2003).

    Article  CAS  Google Scholar 

  8. X.G. Ma and K. Komvopoulos: Pseudoelasticity of shape-memory titanium-nickel films subjected to dynamic nanoindentation. Appl. Phys. Lett. 84, 4274 (2004).

    Article  CAS  Google Scholar 

  9. L.M. Qian, X.D. Xiao, Q.P. Sun, and T.X. Yu: Anomalous relationship between hardness and wear properties of a superelastic nickel-titanium alloy. Appl. Phys. Lett. 84, 1076 (2004).

    Article  CAS  Google Scholar 

  10. C. Liu, Y.P. Zhao, Q.P. Sun, T.X. Yu, and Z.X. Cao: Characteristic of microscopic shape memory effect in a CuAlNi alloy by nanoindentation. J. Math. Sci. 40, 1501 (2005).

    Article  CAS  Google Scholar 

  11. C. Liu, Y.P. Zhao, and T.X. Yu: Measurement of microscopic deformation in a CuAlNi single crystal alloy by nanoindentation with a heating stage. Mater. Des. 26, 465 (2005).

    Article  Google Scholar 

  12. G.A. Shaw, J.S. Trethewey, A.D. Johnson, W.J. Drugan, and W.-C. Crone: Thermomechanical high-density data storage in a metallic material via the shape-memory effect. Adv. Math. 17, 1123 (2005).

    Article  CAS  Google Scholar 

  13. P. Frick, A.M. Ortega, J. Tyber, A.E.M. Maksound, H.J. Maier, Y.N. Liu, and K. Gall: Thermal processing of polycrystalline NiTi shape memory alloys. Mater. Sci. Eng., A 405, 34 (2005).

    Article  Google Scholar 

  14. W.M. Huang, J.F. Su, M.H. Hong, and B. Yang: Pile-up and sink-in in micro-indentation of a NiTi shape-memory alloy. Scr. Mater. 53, 1055 (2005).

    Article  CAS  Google Scholar 

  15. G. Ma: Pseudoelasticity of martensitic titanium-nickel shape-memory films studied by in situ heating nanoindentation and transmission electron microscopy. Appl. Phys. Lett. 87, 263108 (2005).

    Article  Google Scholar 

  16. C.P. Frick, T.W. Lang, K. Spark, and K. Gall: Stress-induced martensitic transformations and shape memory at nanometer scales. Acta Mater. 54, 2223 (2006).

    Article  CAS  Google Scholar 

  17. H.S. Zhang and K. Komvopoulos: Nanoscale pseudoelasticity of single-crystal Cu–Al–Ni shape-memory alloy induced by cyclic nanoindentation. J. Math. Sci. 41, 5021 (2006).

    Article  CAS  Google Scholar 

  18. A.J. Muir Wood and T.W. Clyne: Measurement and modelling of the nanoindentation response of shape memory alloys. Acta Mater. 54, 5607 (2006).

    Article  Google Scholar 

  19. J.F. Su, W.M. Huang, and H.M. Hong: Indentation and two-way shape memory in a NiTi polycrystalline shape-memory alloy. Smart Mater. Struct. 16, S137 (2007).

    Article  CAS  Google Scholar 

  20. W.C. Crone, H. Brock, and A. Creuziger: Nanoindentation and microindentation of CuAlNi shape memory alloy. Exp. Mech. 47, 133 (2007).

    Article  CAS  Google Scholar 

  21. W.Y. Yan, Q.P. Sun, X.Q. Feng, and L.M. Qian: Analysis of spherical indentation of superelastic shape memory alloys. Int. J. Solids Struct. 44, 1 (2007).

    Article  CAS  Google Scholar 

  22. M. Arciniegas, J.M. Manero, J. Pena, F.J. Gil, and J.A. Planell: Study of new multifunctional shape memory and low elastic modulus Ni-free Ti alloys. Metall. Mater. Trans. A 39, 742 (2008).

    Article  Google Scholar 

  23. Y.J. Zhang, Y.T. Cheng, and D.S. Grummon: Two-way indent depth recovery in a NiTi shape memory alloy. Appl. Phys. Lett. 88, 1904 (2006).

    Google Scholar 

  24. Y.J. Zhang, Y.T. Cheng, and D.S. Grummon: Shape memory surfaces. Appl. Phys. Lett. 89, 1912 (2006).

    Google Scholar 

  25. D. Tabor: Indentation hardness: Fifty years on a personal view. Philos. Mag. A 74, 1207 (1996).

    Article  CAS  Google Scholar 

  26. D. Tabor: A simple theory of static and dynamic hardness. Proc. R. Soc. London Ser. A 192, 247 (1948).

    Article  Google Scholar 

  27. J. Fernandez, X.M. Zhang, and J.M. Guilemany: A one-cycle training technique for copper-based shape memory alloys. J. Mater. Process. Technol. 139, 117 (2003).

    Article  CAS  Google Scholar 

  28. R. Stalmans, J.V. Humbeeck, and L. Delaey: Thermomechanical cycling, 2-way memory and concomitant effects in Cu–Zn–Al alloys. Acta Metall. Mater. 40, 501 (1992).

    Article  CAS  Google Scholar 

  29. Y. Liu and J.V. Humbeeck: Two-way shape memory effect developed by martensite deformation in NiTi. Acta Mater. 47, 199 (1998).

    Article  Google Scholar 

  30. J.J. Wang: Two-way shape memory effect induced by cold-rolling in Ti-Ni and Ti-Ni-Fe alloys. Scr. Mater. 52, 311 (2005).

    Article  CAS  Google Scholar 

  31. R. Lahoz, L. Gracia-Villa, and J.A. Puertolas: Training of the two-way shape memory effect by bending in NiTi alloys. J. Eng. Mater. Technol. 124, 397 (2002).

    Article  CAS  Google Scholar 

  32. Y.J. Zhang, Y.T. Cheng, and D.S. Grummon: Understanding indentation-induced two-way shape memory effect. J. Mater. Res. 22, 2851 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueling Fei.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fei, X., Zhang, Y., Grummon, D.S. et al. Indentation-induced two-way shape memory surfaces. Journal of Materials Research 24, 823–830 (2009). https://doi.org/10.1557/jmr.2009.0101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0101

Navigation