Skip to main content
Log in

Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanical response to indentation (including nano- and microindentation) has been investigated in Cu/Au and Cu/Cr multilayers with respective layer thickness ratios of 1:1 and 2:1, and individual layer thickness ranging from nanometer to submicrometer scale. It was found that the Cu/Cr multilayer has higher strength than the Cu/Au multilayer, although both multilayers have close Hall–Petch slope. Examination of indentationinduced deformation behavior shows that the Cu/Cr multilayer exhibits higher resistance to plastic deformation instability than the Cu/Au multilayer. Theoretical analysis indicates that the significant difference in mechanical response originates from the constituent layer configuration and interface structures, which impose distinguishing confining effect on dislocation activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.O. Schweitz, J. Chevallier, and J. Bøttiger: Hardness in Ag/Ni, Au/Ni and Cu/Ni multilayers. Philos. Mag. A 81, 2021 (2001).

    Article  CAS  Google Scholar 

  2. A. Misra, M. Verdier, Y.C. Lu, H. Kung, T.E. Mitchell, M. Nastasi, and J.D. Embury: Structure and mechanical properties of Cu–X (X = Nb, Cr, Ni) nanolayered composites. Scr. Mater. 39, 555 (1998).

    Article  CAS  Google Scholar 

  3. J. McKeown, A. Misra, H. Kung, R.G. Hoagland, and M. Nastasi: Microstructures and strength of nanoscale Cu–Ag multilayers. Scr. Mater. 46, 593 (2002).

    Article  CAS  Google Scholar 

  4. M. Verdier, M. Niewczas, J.D. Embury, M. Hawley, M. Nastasi, and H. Kung: Plastic behavior of Cu–Ni multilayers, in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, N. Burnham, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 77.

    CAS  Google Scholar 

  5. H. Huang and F. Spaepen: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).

    Article  CAS  Google Scholar 

  6. D. Josell, D. van Heerden, D. Read, J. Bonevich, and D. Shechtman: Tensile testing low density multilayers: Aluminum/titanium. J. Mater. Res. 13, 2902 (1998).

    Article  CAS  Google Scholar 

  7. Y. Wang, J. Li, A.V. Hamza, and T.W. Barbee Jr.: Ductile crystalline-amorphous nanolaminates. Proc. Nat. Acad. Sci. USA. 104, 11155 (2007).

    Article  CAS  Google Scholar 

  8. G.P. Zhang, Y. Liu, W. Wang, and J. Tan: Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl. Phys. Lett. 88, 013105 (2006).

    Article  Google Scholar 

  9. J.D. Embury and J.P. Hirth: On dislocation storage and the mechanical response of fine scale microstructures. Acta Metall. Mater. 42, 2051 (1994).

    Article  Google Scholar 

  10. A. Donohue, F. Spaepen, R.G. Hoagland, and A. Misra: Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses. Appl. Phys. Lett. 91, 241905 (2007).

    Article  Google Scholar 

  11. N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, and A. Misra: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008).

    Article  Google Scholar 

  12. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  13. R.G. Hoagland, R.J. Kurtz, and C.H. Henager Jr.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).

    Article  CAS  Google Scholar 

  14. R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch: The plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 45 (1962).

    Article  CAS  Google Scholar 

  15. C.P. Brittain, R.W. Armstrong, and G.C. Smith: Hall-Petch dependence for ultrafine grain size electrodeposited chromium. Scr. Metall. 19, 89 (1985).

    Article  CAS  Google Scholar 

  16. W.D. Nix: Mechanical properties of thin films. Metall. Trans. A 20, 2217 (1989).

    Article  Google Scholar 

  17. A. Misra and R.G. Hoagland: Plastic flow stability of metallic laminate composites. J. Mater. Sci. 42, 1765 (2007).

    Article  CAS  Google Scholar 

  18. Y.M. Wang and E. Ma: Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng., A 375–377, 46 (2004).

    Article  Google Scholar 

  19. Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).

    Article  CAS  Google Scholar 

  20. O. Al Hattamleh, B. Muhunthan, and H.M. Zbib: Multi-slip gradient formulation for modeling microstrcture effects on shear bands in granular materials. Int. J. Solids Struct. 44, 3393 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.P., Zhu, X.F., Tan, J. et al. Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation. Journal of Materials Research 24, 728–735 (2009). https://doi.org/10.1557/jmr.2009.0092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0092

Navigation