Skip to main content

Advertisement

Log in

Nanoindentation of yttria-doped zirconia: Effect of crystallographic structure on deformation mechanisms

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This article presents a nanoindentation study of polycrystalline and single crystals of yttria-doped zirconia with both tetragonal and cubic phases. Analysis of the deformation mechanisms is performed by both atomic force microscopy (AFM) and micro-Raman spectroscopy. Phase transformation from tetragonal to monoclinic phase is clearly distinguished on tetragonal crystals, whereas in cubic crystals the plastic deformation seems to be controlled by dislocation nucleation and interactions. AFM observations in tetragonal zirconia grains have shown that both grain size and autocatalytic transformation strongly influence the size of the transformed zone. Furthermore, the martensitic phase transformation seems to be also strongly dependent of the indenter shape. Experimental results suggest that a critical contact pressure is necessary to induce the phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Messerschmidt, D. Baither, B. Baufeld, and M. Bartsch: Plastic deformation of zirconia single crystals: A review. Mater. Sci. Eng., A 233, 61 (1997).

    Article  Google Scholar 

  2. J. Martinez-Fernandez, M. Jimenez-Melendo, A. Dominguez-Rodriguez, P. Cordier, K.P.D. Lagerlof, and A.H. Heder: High temperature precipitation hardening in Y2O3 partially-stabilized ZrO2 (Y-PSZ) single crystals. III. Effect of solute composition and orientation on the hardening. Acta Metall. Mater. 43, 2469 (1995).

    Article  CAS  Google Scholar 

  3. J. Martinez-Fernandez, M. Jimenez-Melendo, and A. Dominguez-Rodriguez: Microstructural evolution and stability of tetragonal precipitates in Y2O3 partially-stabilized ZrO2 single crystals. Acta Metall. Mater. 43, 593 (1995).

    Article  CAS  Google Scholar 

  4. J. Martinez-Fernandez, M. Jimenez-Melendo, A. Dominguez-Rodriguez, A.H. Heder, and M. Hayakawa: An unusual twin structure in transformed precipitates in Y-PSZ single-crystals. J. Am. Cerarti. Soc. 77, 57 (1994).

    Article  CAS  Google Scholar 

  5. G.V. Srinivasan, J.F. Jue, S.Y. Kuo, and A.V. Virkar: Ferroelastic domain switching in polydomain tetragonal zirconia single-crystals. J. Am. Ceram. Soc. 72, 2098 (1989).

    Article  CAS  Google Scholar 

  6. R.C. Garvie, R.H. Hannink, and R.T. Pascoe: Ceramic steel?Nature 258, 703 (1975).

    Article  CAS  Google Scholar 

  7. D.J. Green, R.H.J. Hannink, and M.V. Swain: Transformation Toughening Ceramics (CRC, Boca Raton, FL, 1989).

    Google Scholar 

  8. S.A. Catledge, M. Cook, Y.K. Vohra, E.M. Santos, M.D. McClenny, and K.D. Moore: Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads. J. Mater. Sci.-Mater. Med. 14, 863 (2004).

    Article  Google Scholar 

  9. S. Deville, J. Chevalier, and H. El Attaoui: Atomic force microscopy study and qualitative analysis of martensite relief in zirconia. J. Am. Ceram. Soc. 88 (5), 1261 (2005).

    Article  CAS  Google Scholar 

  10. Y. Gaillard, E. Jiménez-Piqué, F. Soldera, F. Mücklich, and M. Anglada: Quantification of hydrothermal degradation in zirconia by nanoindentation. Acta Mater. 56 (16), 4206 (2008).

    Article  CAS  Google Scholar 

  11. J. Alcala: Instrumented micro-indentation of zirconia ceramics. J. Am. Ceram. Soc. 83, 1977 (2000).

    Article  CAS  Google Scholar 

  12. J. Martinez Fernandez, M. Jiménez Melendo, A. Domínguez Rodriguez, and A.H. Heder: Microindentation-induced transformation in 3.5-mol-percent-yttria-partially-stabilized zirconia single-crystals. J. Am. Ceram. Soc. 74, 1071 (1991).

    Article  CAS  Google Scholar 

  13. F.R. Chien, F.J. Ubic, V. Prakash, and A.H. Heuer: Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals. Acta Mater. 46, 2151 (1998).

    Article  CAS  Google Scholar 

  14. D. Holmes, A.H. Heuer, and P. Pirouz: Dislocation-structures around vickers indents in 9.4 mol-percent Y2O3-stabilized cubic ZrO2 single-crystals. Philos. Mag. A 67, 325 (1993).

    Article  CAS  Google Scholar 

  15. B.Y. Farber, A.S. Chiarelli, and A.H. Heuer: A dislocation mechanism of crack nucleation in cubic zirconia single-crystals. Philos. Mag. A 70, 201 (1994).

    Article  CAS  Google Scholar 

  16. B.Y. Farber, V.I. Orlov, and A.H. Heuer: Energy dissipation during high temperature displacement-sensitive indentation in cubic zirconia single crystals. Phys. Status Solidi A 166, 115 (1998).

    Article  CAS  Google Scholar 

  17. G.N. Morscher, P. Pirouz, and A.H. Heuer: Temperature-dependence of hardness in yttria-stabilized zirconia single-crystals. J. Am. Ceram. Soc. 74, 491 (1991).

    Article  CAS  Google Scholar 

  18. J. Lian, J.E. Garay, and J. Wang: Grain size and grain boundary effects on the mechanical behavior of fully stabilized zirconia investigated by nanoindentation. Scr. Mater. 56, 1095 (2007).

    Article  CAS  Google Scholar 

  19. M. Fujikane, D. Setoyama, S. Nagao, R. Nowak, and S. Yamanaka: Nanoindentation examination of yttria-stabilized zirconia (YSZ) crystal. J. Alloys Compd. 431, 250 (2007).

    Article  CAS  Google Scholar 

  20. V. Domnich, Y. Gogotsi, and M. Trenary: Identification of pressure-induced phase transformations using nanoindentation, in Fundamentals of Nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), Q8.9.

    Google Scholar 

  21. D. Casellas, A. Feder, L. Llanes, and M. Anglada: Fracture toughness and mechanical strength of Y-TZP/PSZ ceramics. Scr. Mater. 45, 213 (2001).

    Article  CAS  Google Scholar 

  22. D. Casellas, F.L. Cumbrera, F. Sánchez-Bajo, W. Forsling, L. Llanes, and M. Anglada: Fracture toughness and mechanical strength of Y-TZP/PSZ ceramics. J. Eur. Ceram. Soc. 21, 765 (2001).

    Article  CAS  Google Scholar 

  23. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  24. I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A.M. Baro: WSXM: A software for scanning-probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  CAS  Google Scholar 

  25. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H.S. Leipner: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B: Condens. Matter. 67, 172101 (2003).

    Article  Google Scholar 

  26. S. Deville, H. El Attaoui, and J. Chevalier: Atomic force microscopy of transformation toughening in ceria-stabilized zirconia. J. Eur. Ceram. Soc. 25, 3089 (2005).

    Article  CAS  Google Scholar 

  27. B.A. Galanov, V. Domnich, and Y. Gogotsi: elastic–plastic contact mechanics of indentations accounting for phase transformations. Exp. Mech. 43, 303 (2003).

    Google Scholar 

  28. J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, and P. Munroe: Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl. Phys. Lett. 77, 3749 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Jiménez-Piqué.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaillard, Y., Anglada, M. & Jiménez-Piqué, E. Nanoindentation of yttria-doped zirconia: Effect of crystallographic structure on deformation mechanisms. Journal of Materials Research 24, 719–727 (2009). https://doi.org/10.1557/jmr.2009.0091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0091

Navigation