Skip to main content
Log in

Modified method for continuous stiffness measurement

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study proposes a method developed to simultaneously solve contact hardness and reduced modulus by loading and unloading coefficients together with the inclined angle of an indenter. The ratios of the applied load to the squared slopes of load–depth curves during loading and unloading processes were used to determine loading and unloading coefficients. The values of the contact area estimated by the present method were found to be precise for a variety of materials. Compared to the reduced modulus, errors due to underestimated contact area were found more significant in the evaluation of contact hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  2. M. Sakai: Energy principle of the indentation induced inelastic surface deformation and hardness of brittle materials. Acta Metall. Mater. 41, 1751 (1993).

    Article  CAS  Google Scholar 

  3. J.S. Field and M.V. Swain: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  4. S. Suresh and A.E. Giannakopoulos: Determination of elastoplastic properties by sharp indentation. Scr. Mater. 40, 1191 (1999).

    Article  Google Scholar 

  5. B. Taljat, T. Zacharia, and F. Kosel: New analytical procedure to determine stress-strain curve from spherical indentation data. Int. J. Solids Struct. 35, 4411 (1998).

    Article  Google Scholar 

  6. B.N. Lucas, W.C. Oliver, and J.E. Swindman: The dynamics of frequency-specific, depth-sensing indentation testing, in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, N. Burnham, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), pp. 3–14

    CAS  Google Scholar 

  7. T.F. Page, G.M. Pharr, J.C. Hay, W.C. Oliver, B.N. Lucas, E. Herbert, and L. Riester: Nanoindentation characterization of coated systems: P/S2—A new approach using the continuous stiffness technique, in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, N. Burnham, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), pp. 53–64.

    CAS  Google Scholar 

  8. X. Li and B. Bushan: Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation technologies. Surf. Coat. Technol. 163, 521 (2003).

    Article  Google Scholar 

  9. A.C. Fischer-Cripps: Nanoindentation (Springer, New York, 2004).

    Book  Google Scholar 

  10. P.J. Wei and J.F. Lin: A new method developed to evaluate both the hardness and elastic modulus of a coating-substrate system. Surf. Coat. Technol. 200, 2489 (2005).

    Article  CAS  Google Scholar 

  11. M. Sakai: The Meyer hardness, a measure for plasticity?, J. Mater. Res. 14, 3630 (1999).

    Article  CAS  Google Scholar 

  12. K.O. Kese, Z.C. Li, and B. Bergman: Method to account for true contact area in soda-lime glass during nanoindentation with the Berkovich tip. Mater. Sci. Eng., A 404, 1 (2005).

    Article  Google Scholar 

  13. S.V. Hainsworth, H.W. Chandler, and T.F. Page: Analysis of nano-indentation load-displacement loading curves. J. Mater. Res. 11, 1987 (1996).

    Article  CAS  Google Scholar 

  14. M. Sakai and Y. Nakano: Elastoplastic load-depth hysteresis in pyramidal indentation. J. Mater. Res. 17, 2161 (2002).

    Article  CAS  Google Scholar 

  15. M. Sakai: Simultaneous estimate of elastic/plastic parameters in depth-sensing indentation tests. Acta Mater. 51, 391 (2004).

    CAS  Google Scholar 

  16. G. Feng and A.H.W. Ngan: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 (2002).

    Article  CAS  Google Scholar 

  17. Y.W. Zhang and S. Yang: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655 (2004).

    Article  Google Scholar 

  18. C.Y. Zhang, Y.W. Zhang, K.Y. Zeng, and L. Shen: Nanoindentation of polymers with a sharp indenter. J. Mater. Res. 20, 1597 (2005).

    Article  CAS  Google Scholar 

  19. I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  20. G. Hochstetter, A. Jimenez, J.P. Cano, and E. Felder: An attempt to determine the true stress–strain curves of amorphous polymers by nano-indentation. Tribol. Int. 36, 973 (2003).

    Article  CAS  Google Scholar 

  21. Z.Y. Li, Y.T. Cheng, H.T. Yang, and S. Chandrasekar: On two indentation hardness definitions. Surf. Coat. Technol. 154, 124 (2002).

    Article  CAS  Google Scholar 

  22. S.E. Grillo, M. Ducarroir, M. Nadal, E. Tournie, and J-P. Faurie: Nanoindentation of Si, GaP, GaAs and ZnSe Single crystals. J. Phys. D: Appl. Phys. 36, L5 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen Fin Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, P.J., Lin, J.F. Modified method for continuous stiffness measurement. Journal of Materials Research 24, 599–606 (2009). https://doi.org/10.1557/jmr.2009.0087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0087

Navigation