Skip to main content
Log in

Preparation of Zr60Ni21Al19 bulk metallic glass and compression behavior under high pressure

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Zr60Ni21Al19 metallic glass rod, with a diameter of 8 mm, is manufactured by copper mold casting. The as-cast bulk metallic glass (BMG) exhibits nearly zero plastic strain, but a high strength of 1.88 GPa. The compression behavior of this new zirconium-base ternary BMG under high pressure at ambient temperature in a diamond-anvil cell instrument has been unraveled using energy dispersive x-ray diffraction with a synchrotron radiation source. The investigation shows that the amorphous structure of Zr60Ni21Al19 is stable under pressures up to 24.5 GPa at room temperature. According to the Bridgman equation of state, the bulk modulus B0 = 96 GPa has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. A. Peker W.L. Johnson: Highly processing metallic glass Zr41.5Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342 1993

    Article  Google Scholar 

  2. A. Inoue, T. Zhang T. Masumoto: Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans., JIM 31(3), 177 1990

    Article  Google Scholar 

  3. W.H. Wang, Q. Wei S. Friedrich: Microstructure and decomposition and crystallization in metallic glass ZrTiCuNiBe alloy. Phys. Rev. B 57, 8211 1998

    Article  CAS  Google Scholar 

  4. W.H. Wang, Z.X. Bao, C.X. Liu, D.Q. Zhao J. Eckert: Equation of state of ZrTiCuNiBe bulk amorphous alloy. Phys. Rev. B 61, 3166 2000

    Article  CAS  Google Scholar 

  5. G. Li, Y.Q. Wang, Y.P. Gao, R.J. Zhang, Z.J. Zhan, L.L. Sun, J. Zhang W.K. Wang: Wear behaviors of bulk Zr41Ti12.5Cu14Ni10Be22.5 metallic glasses. J. Mater. Res. 17, 1877 2002

    Article  CAS  Google Scholar 

  6. X.P. Tang, U. Geyer R. Busch: Diffusion mechanisms in metallic supercooled liquids and glasses. Nature 402, 160 1999

    Article  CAS  Google Scholar 

  7. W.H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison Jr., J.A. Horton Jr., C.A. Carmichael J.L. Wright: Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics 10, 1157 2002

    Article  CAS  Google Scholar 

  8. K.M. Flores R.H. Dauskardt: Enhanced toughness due to stable crack tip damage zones in bulk metallic glass. Scr. Mater. 41, 937 1999

    Article  CAS  Google Scholar 

  9. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 1999

    Article  CAS  Google Scholar 

  10. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000

    Article  CAS  Google Scholar 

  11. M.S.T. Bukowinski L. Knopoff: Physics and chemistry of iron and potassium at lower-mantle and core pressure in Geophysics: High-Pressure Research edited by M.H. Manghnani and S. Akimoto Academic Press New York 1977 367

    Chapter  Google Scholar 

  12. G. Ruitenberg, P.D. Hey, F. Sommer J. Sietsma: Pressure-induced structural relaxation in amorphous Pd40Ni40P20: The formation volume for diffusion defects. Phys. Rev. Lett. 79, 4830 1997

    Article  CAS  Google Scholar 

  13. H.S. Chen: Glassy metals. Rep. Prog. Phys. 43, 353 1980

    Article  Google Scholar 

  14. A.L. Greer: Atomic transport and structural relaxation in metallic glasses. J. Non-Cryst. Solids 61–62, 737 1984

    Article  Google Scholar 

  15. T. Morishita: High density amorphous form and polyamorphic transformations of silicon. Phys. Rev. Lett. 93, 055503 2004

    Article  Google Scholar 

  16. W.H. Wang, P. Wen, L.M. Wang, Y. Zhang, M.X. Pan, D.Q. Zhao R.J. Wang: Equation of state of bulk metallic glasses studied by an ultrasonic method. Appl. Phys. Lett. 79, 3947 2001

    Article  CAS  Google Scholar 

  17. P.W. Bridgman: The Physics of High Pressure Bell & Sons London 1958

    Google Scholar 

  18. H.W. Sheng, H.Z. Liu, Y.Q. Cheng, J. Wen, P.L. Lee, W.K. Luo, S.D. Shastri E. Ma: Polyamorphism in a metallic glass. Nat. Mater. 6, 192 2007

    Article  CAS  Google Scholar 

  19. C. Meade, R.J. Hemley H.K. Mao: High-pressure x-ray-diffraction of SiO2 glass. Phys. Rev. Lett. 69, 1387 1992

    Article  CAS  Google Scholar 

  20. S. Sen, S. Gaudio, B.G. Aitken C.E. Lesher: A pressure-induced first-order polyamorphic transition in a chalcogenide glass at ambient temperature. Phys. Rev. Lett. 97, 025504 2006

    Article  CAS  Google Scholar 

  21. M.H. Cohen D.J. Turnbull: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164 1959

    Article  CAS  Google Scholar 

  22. H. Marc, F. Spaepen M. Feuerbacher: Creation and annihilation of free volume during homogeneous flow of a metallic glass. J. Appl. Phys. 97, 033506 2005

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Hebei province Natural Science Foundation under Grant No. A2007000296, National Natural Science Foundation under Grant No. 50731005, National Basic Research Program of China (SKPBRC) under Grant No. 2007CB616915/2006CB605201, and Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) (Grant No. IRT0650).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Jing, Q., Xu, T. et al. Preparation of Zr60Ni21Al19 bulk metallic glass and compression behavior under high pressure. Journal of Materials Research 23, 2346–2349 (2008). https://doi.org/10.1557/jmr.2008.0310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2008.0310

Navigation