Skip to main content
Log in

Investigation of nitrogen-doped TiO2 thin films grown by reactive pulsed laser deposition

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nitrogen-doped titanium dioxide (TiO2) thin films were synthesized on glass substrates by reactive pulsed laser deposition technique (PLD). A frequency quadrupled Nd:YAG (λ = 266 nm, τFWHM ≅ 5 ns, ν = 10 Hz) laser source was used for the irradiations of TiO2 targets. The experiments were performed in controlled reactive atmosphere consisting of mixtures of oxygen and nitrogen gases. We demonstrated that there exists the possibility for the accurate control of the nitrogen incorporation through the growth parameters, i.e., the nitrogen partial pressure in the reaction enclosure. The substitutional nitrogen doping of the anatase phase TiO2 thin films allows for the continuous shift of the optical absorption edge towards the visible spectral range. When a threshold value of the nitrogen dopant level is surpassed the crystallization structure of the TiO2 anatase phase thin films changes, and the onset of a stable titanium-oxinitride phase formation takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. K. Honda A. Fujishima: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 1972

    Article  Google Scholar 

  2. M.R. Hoffmann, S.T. Martin, W. Choi D.W. Bhanemann: Enviromental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 1995

    Article  CAS  Google Scholar 

  3. O. Khaselev J.A. Turner: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 1998

    Article  CAS  Google Scholar 

  4. A.K. Ghosh H.P. Maruska: Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes. J. Electrochem. Soc. 124, 1516 1977

    Article  CAS  Google Scholar 

  5. W. Choi, A. Termin M.R. Hoffmann: The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669 1994

    Article  Google Scholar 

  6. I. Justicia, P. Ordejón, G. Canto, J.L. Mozos, J. Fraxedas, G.A. Battiston, R. Gerbasi A. Figueras: Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Adv. Mater. 14, 1399 2002

    Article  CAS  Google Scholar 

  7. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki Y. Taga: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 2001

    Article  CAS  Google Scholar 

  8. H. Matsui, H. Tabata, N. Hasuike, H. Harima B. Mizobuchi: Epitaxial growth and characteristics of N-doped anatase TiO2 films grown using a free-radical nitrogen oxide source. J. Appl. Phys. 97, 123511 2005

    Article  Google Scholar 

  9. Y. Suda, H. Kawasaki, T. Ueda T. Ohshima: Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films 453–454, 162 2004

    Article  Google Scholar 

  10. M. Sathish, B. Viswanathan, R.P. Viswanath C.S. Gopinath: Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mater. 17, 6349 2005

    Article  CAS  Google Scholar 

  11. T. Okato, T. Sakano M. Obara: Suppression of photocatalytic efficiency in highly N-doped anatase films. Phys. Rev. B 72, 115124 2005

    Article  Google Scholar 

  12. T. Lindgren, J.M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C.G. Granqvist S.E. Lindquist: Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J. Phys. Chem. B 107, 5709 2003

    Article  CAS  Google Scholar 

  13. S.M. Prokes, J.L. Gole, X. Chen, C. Burda W.E. Carlos: Defect-related optical behavior in surface modified TiO2 nanostructures. Adv. Funct. Mater. 15, 161 2005

    Article  CAS  Google Scholar 

  14. K. Murakami: Laser Ablation of Electronic Materials—Basic Mechanisms and Applications edited by E. Fogarassy and S. Lazare Elsevier Amsterdam 1992 125

  15. M. Von Allmen A. Blatter: Laser-Beam Interactions with Materials 2nd ed. Springer-Verlag Berlin 1995

    Book  Google Scholar 

  16. D. Bäuerle: Laser Processing and Chemistry Springer-Verlag Berlin 1996

    Book  Google Scholar 

  17. Pulsed Laser Deposition of Thin Films edited by D. G. Chrisey and G. K. Hubler Wiley New York 1994

    Google Scholar 

  18. I.N. Mihailescu E. György: Trends in Optics and Photonics edited by T. Asakura Springer Berlin 1999 201

  19. Pulsed Laser Deposition of Thin Films, edited by R. Eason Wiley Hoboken, New Jersey 2006

    Google Scholar 

  20. P. Xu, L. Mi P.N. Wang: Improved optical response for N-doped anatase TiO2 films prepared by pulsed laser deposition in N2/NH3/O2 mixture. J. Cryst. Growth 289, 433 2006

    Article  CAS  Google Scholar 

  21. Y. Suda, H. Kawasaki, T. Ueda T. Ohshima: Preparation of high quality nitrogen doped TiO2 thin films as a photocatalyst using a pulsed laser deposition method. Thin Solid Films 453–454, 162 2004

    Article  Google Scholar 

  22. JCPDS No. 21-1272 and No. 44-0951. International Center for Diffraction Data Newton Square, PA 1994

  23. N.C. Saha H.G. Tompkins: Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. Appl. Phys. 72, 3072 1992

    Article  CAS  Google Scholar 

  24. P. Prieto R.E. Kirby: X-ray photoelectron spectroscopy study of the difference between reactively evaporated and direct sputter-deposited TiN films and their oxidation properties. J. Vac. Sci. Technol., A 13, 2819 1995

    Article  CAS  Google Scholar 

  25. F. Esaka, K. Furuya, H. Shimada, M. Imamura, N. Matsubayashi, H. Sato, A. Nishijima, A. Kawana, H. Ichimura T. Kikuchi: Comparison of surface oxidation of titanium nitride and chromium nitride films studied by x-ray absorption and photoelectron spectroscopy. J. Vac. Sci. Technol., A 15, 2521 1997

    Article  CAS  Google Scholar 

  26. J.L. Gole, J.D. Stout, C. Burda, Y. Lou X. Chen: Highly efficient formation of visible light tunable TiO2–xNx photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B 108, 1230 2004

    Article  CAS  Google Scholar 

  27. X. Chen C. Burda: Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J. Phys. Chem. B 108, 15446 2004

    Article  CAS  Google Scholar 

  28. L. Miao, S. Tanemura, H. Watanabe, Y. Mori, K. Kaneko S. Ton: The improvement of optical reactivity for TiO2 thin films by N2–H2 plasma surface-treatment. J. Cryst. Growth 260, 118 2004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the European Union under the contract “Functionalized Advanced Materials Engineering of Hybrids and Ceramics (FAME), NMP3-CT-2004-500159, the Catalan Government (Departament de Medi Ambient i Habitatge), SGR-0333 Grant is acknowledged with thanks. The authors acknowledge with many thanks the support and advice in performing the x-ray photoelectron spectroscopy investigations of Dr. Jordi Fraxedas, Centre d’Investigacions en Nanociència i Nanotecnologia, Barcelona, Spain and the Romanian National University Research Council Grant 863/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. György.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauthier, G., György, E. & Figueras, A. Investigation of nitrogen-doped TiO2 thin films grown by reactive pulsed laser deposition. Journal of Materials Research 23, 2340–2345 (2008). https://doi.org/10.1557/jmr.2008.0306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2008.0306

Navigation