Skip to main content
Log in

Investigation into the effect of nucleation parameters on grain formation during solidification using a cellular automaton-finite control volume method

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A cellular automation (CA) model has successfully been used to model the development of microstructure of an aluminum alloy during solidification to produce detailed structure maps for the solidified alloys. More recently, the application of CA models to practical castings/solidification conditions has attracted increasing research interest. However, the determination of the calculation parameters of any model associated with nucleation is difficult. Accordingly, this work investigates the detailed effect of the six parameters of nucleation on microstructure formation and morphology as well as the grain size by cellular automaton-finite control volume method (CAFVM). The nucleation parameters can be determined or estimated by comparing the calculated and experimental results, which enables a more practical prediction of the microstructure (morphology and grain size).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
TABLE I.
TABLE II.
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. W.P. Bennon F.P. Incropera: A continuum model for momentum, heat and species transport in binary solid liquid-phase change system 1: Model formation. Int. J. Heat Mass Transfer 30, 2161 1987

    Article  CAS  Google Scholar 

  2. V.R. Voller, A.D. Brent C. Prakash: The modelling of heat, mass and solute transport in solidification systems. Int. J. Heat Mass Transfer 32, 1719 1989

    Article  CAS  Google Scholar 

  3. S. Ganesan D.R. Poirier: Conservation of mass and momentum for the flow of interdentritic liquid during solidification. Metall. Trans. B 21, 173 1990

    Article  Google Scholar 

  4. J. Ni C. Beckermann: A volume-averaged 2-phase model for transport phenomena during solidification. Metall. Trans. B 22, 349 1991

    Article  Google Scholar 

  5. M.P. Anderson, D.J. Srolovitz, G.S. Grest P.S. Sahni: Computer-simulation of grain-growth 1: Kinetics. Acta Metall. 32, 783 1984

    Article  CAS  Google Scholar 

  6. D.J. Srolovitz, M.P. Anderson, P.S. Sahni G.S. Grest: Computer-simulation of grain-growth 2: Grain size distribution, topology and local dynamics. Acta Metall. 32, 793 1984

    Article  CAS  Google Scholar 

  7. D.J. Srolovitz, M.P. Anderson, G.S. Grest P.S. Sahni: Computer-simulation of grain-growth 3: Influence of a particle dispersion. Acta Metall. 32, 1429 1984

    Article  CAS  Google Scholar 

  8. H.W. Hesselbarth I.R. Gobel: Simulation of recrystallzation by cellular automata. Acta Metall. Mater. 39, 2135 1991

    Article  CAS  Google Scholar 

  9. I. Maxwell A. Hellawell: Simple model for grain refinement during solidification. Acta Metall. 23, 229 1975

    Article  CAS  Google Scholar 

  10. Ch. Charbon, A. Jacot M. Rappaz: 3D stochastic modelling of equiaxed solidification in the presence of grain movement. Acta Metall. Mater. 42, 3953 1994

    Article  CAS  Google Scholar 

  11. S.Y. Lee, S.M. Lee C.P. Hong: Numerical modeling of deflected columnar dendritic grains solidified in a flowing melt and its experimental verification. ISIJ Int. 40, 48 2000

    Article  CAS  Google Scholar 

  12. Ph. Thevoz, J.L. Desbiolles M. Rappaz: Modeling of equiaxed microstructure formation in casting. Metall. Trans. A 20, 311 1989

    Article  Google Scholar 

  13. D.M. Stefanescu, A. Moitra D. Bandyopadhyay: Heat transfer-solidification kinetics modelling of solidification of castings. Metall. Trans. A 21, 997 1990

    Article  Google Scholar 

  14. Ch.A. Gandin M. Rappaz: A coupled finite-element cellular-automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metall. Mater. 42, 2233 1994

    Article  CAS  Google Scholar 

  15. H. Rafii-Tabar A. Chirazi: Multi-scale computational modelling of solidification phenomena. Phys. Rep. 365, 145 2002

    Article  CAS  Google Scholar 

  16. D.M. Stefanescu: Solidification and modeling of cast iron–A short history of the defining moments. Mater. Sci. Eng., A 413–414, 322 2005

    Article  CAS  Google Scholar 

  17. M. Rappaz Ch-A. Gandin: Probabilistic modeling of microstructure formation in solidification processes. Acta Metall. 41, 345 1993

    Article  CAS  Google Scholar 

  18. W. Kurz D.J. Fisher: Fundamentals of Solidification Trans Tech Publications Aedermannsdorf, Switzerland 1989

    Google Scholar 

  19. B. Chalmers: Principles of Solidification Wiley New York 1964

    Google Scholar 

  20. W.J. Boettinger, J.A. Warren, C. Bechermann A. Karma: Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32, 163 2002

    Article  CAS  Google Scholar 

  21. A. Karma W.J. Rappel: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323 1998

    Article  CAS  Google Scholar 

  22. L. Granasy, T. Pusztai, T. Borzsonyi, G. Toth, G. Tegze, J.A. Warren J.F. Douglas: Phase field theory of crystal nucleation and polyerystalline growth: A review. J. Mater. Res. 21, 309 2006

    Article  CAS  Google Scholar 

  23. J.A. Spittle S.G.R. Brown: Computer-simulation of the effects of alloy variables on the grain structures of castings. Acta Metall. 37, 1803 1989

    Article  CAS  Google Scholar 

  24. S.G.R. Brown J.A. Spittle: Modelling of Casting, Welding and Advanced Solidification Processes, edited by M. Rappaz, M. Ozgu, and K. Mahin TMS Warrendale, PA 1991 395

  25. B. Echebarria, R. Folch, A. Karma M. Plapp: Quantitative phase-field model of alloy solidification. Phys. Rev. E 70, 061604 2004

    Article  CAS  Google Scholar 

  26. R. Folch M. Plapp: Quantitative phase-field modeling of two-phase growth. Phys. Rev. E 72, 011602 2005

    Article  CAS  Google Scholar 

  27. M. Greenwood, M. Haataja N. Provatas: Crossover scaling of wavelength selection in directional solidification of binary alloys. Phys. Rev. Lett. 93, 246101 2004

    Article  CAS  Google Scholar 

  28. X. Yao, H. Wang, B. He X. Zhou: Modeling of columnar-to-equiaxed transition in solidified Al–Si alloys. Mater. Sci. Forum 457–479, 3141 2005

    Article  Google Scholar 

  29. L. Nastac: Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys. Acta Mater. 47, 4253 1999

    Article  CAS  Google Scholar 

  30. M.F. Zhu C.P. Hong: A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys. ISIJ Int. 41, 436 2001

    Article  CAS  Google Scholar 

  31. X. Yao, C.J. Davidson, A.K. Dahle D.H. StJohn: Modelling of microstructure formation and evolution during solidification. Int. J. Cast Met. Res. 15, 219 2002

    Article  CAS  Google Scholar 

  32. X. Yao, B. He, H. Wang X. Zhou: Numerical simulation of dendrite growth during solidification. Int. J. Non-Linear Sci. Numer. Simulat. 7, 171 2006

    CAS  Google Scholar 

  33. W.S. Ping, D.R. Liu, J.J. Guo, C.Y. Li, Y.Q. Su F.H. Zhi: Numerical simulation of microstructure evolution of Ti–6Al–4V alloy in vertical centrifugal casting. Mater. Sci. Eng., A 426, 240 2006

    Article  CAS  Google Scholar 

  34. K. Ito, R. Shara, S. Farjami, T. Marutama H. Kubo: Evolution of solidification structures in Fe–Mn–Si–Cr shape memory alloy in centrifugal casting. Mater. Trans. 47, 1584 2006

    Article  CAS  Google Scholar 

  35. S-H. Cho, T. Okane T. Umeda: CA-DFD analysis of nucleation parameter effects on the grain structures of castings. Int. J. Cast Met. Res. 13, 327 2001

    Article  CAS  Google Scholar 

  36. L. Backerud, P. Gistafson M. Johnsson: Grain refining mechanism as a result of addition of titanium and boron. Aluminium 67, 910 1991

    Google Scholar 

  37. J. Hutt: The origin of equiaxed crystals and the grain size transition in aluminum-silicon alloys. Ph.D. Thesis, The University of Queensland, 2001

    Google Scholar 

  38. M. Easton: Grain refinement mechanisms in aluminum and its alloys and the effect of grain refinement on castability. Ph.D. Thesis, The University of Queensland, 1999

    Google Scholar 

  39. D.R. Croft D.G. Lilley: Heat Transfer Calculation Using Finite Difference Equations Applied Science London 1977

    Google Scholar 

  40. X. Yao, S.D. McDonald, A.K. Dahle, C.J. Davidson D.H. StJohn: Modeling of grain refinement: Part I. Effect of the solute for aluminum. J. Mater. Res. 23(5), 1282 2008

    Article  CAS  Google Scholar 

  41. W. Kurz, B. Giovanola R. Trivedi: Theory of microstructural development during rapid solidification. Acta Metall. 34, 823 1986

    Article  CAS  Google Scholar 

  42. R.D. Pehlke, A. Jeyrajan H. Wada: Summary of Thermal Properties for Casting Alloys and Mold Materials, University of Michigan, 1982

    Google Scholar 

  43. P.A. Tondel: Grain refinement of hypoeutectic Al-Si foundry alloys. Ph.D. Thesis, Norwegian Institute of Technology, Trondheim, Norway, 1994

    Google Scholar 

  44. X. Yao, S.D. McDonald, A.K. Dahle, C.J. Davidson D.H. StJohn: Modeling of grain refinement: Part II. Effect of nucleant particles-TiB2 additions for aluminum. J. Mater. Res. 23(5), 1292 2008

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work was supported by the CAST Cooperative Research Centre, which was established under the Australian Government’s Cooperative Research Centres Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, X., Dargusch, M., Dahle, A. et al. Investigation into the effect of nucleation parameters on grain formation during solidification using a cellular automaton-finite control volume method. Journal of Materials Research 23, 2312–2325 (2008). https://doi.org/10.1557/jmr.2008.0303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2008.0303

Navigation