Skip to main content
Log in

Improved lithium insertion/extraction properties of single-walled carbon nanotubes by high-energy ball milling

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of ball milling on lithium (Li) insertion/extraction properties into/from single-walled carbon nanotubes (SWNTs) were investigated. The SWNTs were synthesized on supported catalysts by thermal chemical-vapor deposition method, purified, and mechanically ball-milled by high-energy ball milling. The purified SWNTs and the ball-milled SWNTs were electrochemically inserted/extracted with Li. The structural and chemical modifications in the ball-milled SWNTs change the insertion/extraction properties of Li ions into/from the ball-milled SWNTs. The reversible capacity (Crev) increases with increase in the ball milling time, from 616 mAh/g (Li1.7C6) for the purified SWNTs to 988 mAh/g (Li2.7C6) for the ball-milled SWNTs. The undesirable irreversible capacity (Cirr) decreases continuously with increase in the ball milling time, from 1573 mAh/g (Li4.2C6) for the purified SWNTs to 845 mAh/g (Li2.3C6) for the ball-milled SWNTs. The enhanced Crev of the ball-milled SWNTs is presumably due to a continuous decrease in the Cirr because the SWNTs develop a densely packed structure on the ball milling process. The insertion of Li ions into the ball-milled SWNTs is facilitated by various Li insertion sites formed during the ball milling process in spite of small surface area than the purified SWNTs. Lithium ions inserted into various insertion sites enhance the Crev in the ball-milled SWNTs with the large voltage hysteresis by hindrance of the extraction of Li ions from the ball-milled SWNTs. In addition, the ball-milled samples exhibit more stable cycle capacities than the purified samples during the charge/discharge cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
TABLE I.
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairac B. Simon: Electrochemical intercalation of lithium into multiwall carbon nanotubes. Chem. Phys. Lett. 312, 14 1999

    Article  CAS  Google Scholar 

  2. G.T. Wu, C.S. Wang, X.B. Zhang, H.S. Yang, Z.F. Qi, P.M. He W.Z. Li: Structure and lithium insertion properties of carbon nanotubes. J. Electrochem. Soc. 146, 1696 1999

    Article  CAS  Google Scholar 

  3. T. Ishihara, A. Kawahara, H. Nishiguchi, M. Yoshio Y. Takita: Effects of synthesis condition of graphitic nanocarbon tube on anodic property of Li-ion rechargeable battery. J. Power Sources 97–98, 129 2001

    Article  Google Scholar 

  4. E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy F. Beguin: Electrochemical storage of lithium multiwalled carbon nanotubes. Carbon 37, 61 1999

    Article  CAS  Google Scholar 

  5. Z.H. Yang H.Q. Wu: Electrochemical intercalation of lithium into carbon nanotubes. Solid State Ionics 143, 173 2001

    Article  CAS  Google Scholar 

  6. T.P. Kumar, A.M. Stephan, P. Thayananth, V. Subramanian, S. Gopukumar, N.G. Renganathan, M. Raghavan N. Muniyandi: Thermally oxidized graphites as anodes for lithium-ion cells. J. Power Sources 97–98, 118 2001

    Article  Google Scholar 

  7. B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu O. Zhou: Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem. Phys. Lett. 307, 153 1999

    Article  CAS  Google Scholar 

  8. A.S. Claye, J.E. Fischer, C.B. Huffman, A.G. Rinzler R.E. Smalley: Solid-state electrochemistry of the Li single wall carbon nanotube system. J. Electrochem. Soc. 147, 2845 2000

    Article  CAS  Google Scholar 

  9. B. Gao, C. Bower, J.D. Lorentzen, L. Fleming, A. Kleinhammes, X.P. Tang, L.E. McNeil, Y. Wu O. Zhou: Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem. Phys. Lett. 327, 69 2000

    Article  CAS  Google Scholar 

  10. H. Shimoda, B. Gao, X.P. Tang, A. Kleinhammes, L. Fleming, Y. Wu O. Zhou: Lithium intercalation into etched single-wall carbon nanotubes. Physica B (Amsterdam) 323, 133 2002

    Article  CAS  Google Scholar 

  11. H. Shimoda, B. Gao, X.P. Tang, A. Kleinhammes, L. Fleming, Y. Wu O. Zhou: Lithium intercalation into opened single-wall carbon nanotubes: Storage capacity and electronic properties. Phys. Rev. Lett. 88, 15502 2002

    Article  CAS  Google Scholar 

  12. J.S. Benjamin: Production of metallic composite powder with fine controlled microstructure. Met. Powder Rep. 45, 122 1990

    Article  Google Scholar 

  13. W. Xing, R.A. Dunlap J.R. Dahn: Studies of lithium insertion in ballmilled sugar carbons. J. Electrochem. Soc. 145, 62 1998

    Article  CAS  Google Scholar 

  14. J.Y. Eom, D.Y. Kim H.S. Kwon: Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition. J. Power Sources 157, 507 2006

    Article  CAS  Google Scholar 

  15. B. Zheng, Y. Li J. Liu: CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst. Appl. Phys. A 74, 345 2002

    Article  CAS  Google Scholar 

  16. J.Y. Eom, H.S. Kwon, J. Liu O. Zhou: Lithium insertion into purified and etched multi-walled carbon nanotubes synthesized on supported catalysts by thermal CVD. Carbon 42, 2589 2004

    Article  CAS  Google Scholar 

  17. K. Kinoshita: Carbon: Electrochemical and Physicochemical Properties Wiley New York 1988 387

    Google Scholar 

  18. J.O. Besenhard: Handbook of Battery Materials Wiley Weinheim, Germany 1999 244

    Google Scholar 

  19. T. Osaka M. Datta: Energy Storage Systems for Electronics Gordon Singapore 2000 251

    Book  Google Scholar 

  20. J.R. Dahn, T. Zheng, Y. Liu J.S. Xue: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590 1995

    Article  CAS  Google Scholar 

  21. P. Zhou, P. Papanek, R. Lee J.E. Fischer: Local structure and vibrational spectroscopy of disordered carbons for Li batteries: Neutron-scattering studies. J. Electrochem. Soc. 144, 1744 1997

    Article  CAS  Google Scholar 

  22. M.D. Levi, E.A. Levi D. Aurbach: The mechanism of lithium intercalation in graphite film electrodes in aprotic media. J. Electroanal. Chem. 421, 89 1997

    Article  CAS  Google Scholar 

  23. J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, A.R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, A.K. Shelimov, C.B. Huffman, F.R. Macias, Y.S. Shon, T.R. Lee, D.T. Colbert R.E. Smalley: Fullerene pipes. Science 280, 1253 1998

    Article  CAS  Google Scholar 

  24. T. Saito, K. Matsushige K. Tanaka: Chemical treatment and modification of multi-walled carbon nanotubes. Physica B (Amsterdam) 323, 280 2002

    Article  CAS  Google Scholar 

  25. W. Xing J.R. Dahn: Study of irreversible capacities for Li insertion in hard and graphitic carbons. J. Electrochem. Soc. 144, 1195 1997

    Article  CAS  Google Scholar 

  26. E. Peled, C. Menachem, D.B. Tow A. Melman: Improved graphite anode for lithium-ion batteries. J. Electrochem. Soc. 143, L4 1996

    Article  CAS  Google Scholar 

  27. Y.E. Eli V.R. Koch: Chemical oxidation: A route to enhanced capacity in Li-ion graphite anodes. J. Electrochem. Soc. 144, 2968 1997

    Article  Google Scholar 

  28. Z.H. Yang H.Q. Wu: The electrochemical impedance measurements of carbon nanotubes. Chem. Phys. Lett. 343, 235 2001

    Article  CAS  Google Scholar 

  29. Z. Yang, Y. Feng, Z. Li, S. Sang, Y. Zhou L. Zeng: An investigation of lithium intercalation into the carbon nanotubes by a.c. impedance. J. Electroanal. Chem. 580, 340 2005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HyukSang Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eom, J., Kwon, H. Improved lithium insertion/extraction properties of single-walled carbon nanotubes by high-energy ball milling. Journal of Materials Research 23, 2458–2466 (2008). https://doi.org/10.1557/jmr.2008.0291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2008.0291

Navigation