Skip to main content

Advertisement

Log in

Improvement in mechanical properties of sintered zirconia (3% yttria stabilized) by glass infiltration

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The goal of this work was to improve the strength of sintered zirconia (3 mol% yttria stabilized) by surface treatment, using a low expansion glass (Mg3Al2Si6O18) at high temperature. The room-temperature strength was increased by about 42% when the glass was penetrated for 30 min. There was a drastic increase in the Weibull modulus. However, the longer holding time led to grain coarsening and the excess glass deteriorated the strength. The magnitude of the strength increment was on the order of surface stress measured experimentally and thermo-elastic stress predicted theoretically. A significant contribution of phase transformation of zirconia from tetragonal to monoclinic phase on the residual stress was also found. Furthermore, compared to the as-sintered zirconia, the glass-treated sample (penetrated for 30 min) exhibited relatively higher strength at elevated temperature (750 °C) and also showed a significant improvement in the thermal shock resistance behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
TABLE II.

Similar content being viewed by others

References

  1. H.P. Kirchner, R.M. Gruver R.E. Walker: Strengthening alumina by glazing and quenching. Bull. Am. Ceram. Soc. 47, 798 1968

    Google Scholar 

  2. H.P. Kirchner: Strengthening of Ceramics CRC New York 1979 13

    Google Scholar 

  3. H.P. Kirchner, R.M. Gruver R.E. Walker: Chemical strengthening of polycrystalline alumina. J. Am. Ceram. Soc. 51, 251 1968

    Article  CAS  Google Scholar 

  4. S. Noda, H. Doi, T. Hioki, J.I. Kawamoto O. Kamigaito: Strengthening of alumina by reactions with silicon film on the surface and effects of ion irradiation. J. Am. Ceram. Soc. 69, c–210 1986

    Article  Google Scholar 

  5. L. Nikolic L. Radonjic: Alumina strengthening by silica sol-gel coating. Thin Solid Films 295, 101 1997

    Article  CAS  Google Scholar 

  6. T. Watari, S. Shimomura, T. Torikai Y. Imaoka: Reactive infiltration of magnesium vapor into alumina powder compacts. J. Eur. Ceram. Soc. 19, 1889 1999

    Article  CAS  Google Scholar 

  7. L. Xiao-Ping, T. Jie-Mo, Z. Tun-Long W. Ling: Strength and fracture toughness of MgO-modified glass infiltrated alumina for CAD/CAM. Dent. Mater. 18, 216 2002

    Article  Google Scholar 

  8. M. Guazzato, M. Albakry, S.P. Ringer M.V. Swain: Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent. Mater. 20, 441 2004

    Article  CAS  Google Scholar 

  9. M.C. Chu, B.B. Panigrahi, A. Balakrishnan, S.J. Cho, K.J. Yoon, T.N. Kim K.H. Lee: Strengthening of alumina by a low thermal expansion glass at surface. Mater. Sci. Eng., A 452–453, 110 2007

    Article  Google Scholar 

  10. A. Balakrishnan, M.C. Chu, B.B. Panigrahi, K.J. Yoon, J.C. Kim, B.C. Lee, T.N. Kim S.J. Cho: Surface strengthening of zirconia toughened alumina (ZTA) using glass infiltration technique. Solid State Phenom. 124–126, 695 2007

    Article  Google Scholar 

  11. D. Sarkar, B. Basu, M.C. Chu S.J. Cho: Is glass infiltration beneficial to improve fretting wear properties for alumina? J. Am. Ceram. Soc. 90, 523 2007

    Article  CAS  Google Scholar 

  12. F.F. Lange: Transformation toughening Part 3: Experimental observation in ZrO2–Y2O3 system. J. Mater. Sci. 17, 240 1982

    Article  CAS  Google Scholar 

  13. D.J. Green: A technique for introducing surface compression into zirconia ceramics. J. Am. Ceram. Soc. 66, c178 1983

    Article  CAS  Google Scholar 

  14. E.P. Butler: Transformation-toughened zirconia ceramics. Mater. Sci. Technol. 6, 417 1985

    Article  Google Scholar 

  15. W.J. Tseng, M. Taniguchi T. Yamada: Transformation strengthening of as-sintered zirconia ceramics. Ceram. Int. 25, 545 1999

    Article  CAS  Google Scholar 

  16. M. Guazzato, M. Albakry, S.P. Ringer M.V. Swain: Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent. Mater. 20, 449 2004

    Article  CAS  Google Scholar 

  17. B. Basu: Toughening of yttria-stabilised tetragonal zirconia ceramics. Inter. Mater. Rev. 50, 239 2005

    Article  CAS  Google Scholar 

  18. S. Shukla S. Seal: Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int. Mater. Rev. 50, 45 2005

    Article  CAS  Google Scholar 

  19. T. Kosmac, C. Oblak, P. Jevnikar, N. Funduk L. Marion: The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent. Mater. 15, 426 1999

    Article  CAS  Google Scholar 

  20. M. Guazzato, L. Quach, M. Albakry M.V. Swain: Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J. Dent. 33, 9 2005

    Article  CAS  Google Scholar 

  21. J. Kondoh: Aging strengthening of 8 mol% yttria-fully-stabilized zirconia. J. Alloys Compd. 370, 285 2004

    Article  CAS  Google Scholar 

  22. P.W. McMillan Glass-Ceramics, 2nd ed. Academic Press London, UK 1964 261

    Google Scholar 

  23. W.D. Kingery, H.K. Bowen D.R. Uhlman: Introduction to Ceramics, 2nd ed. John Wiley & Sons New York 1976

    Google Scholar 

  24. J. Jitcharoen, N.P. Padture, A.E. Giannakopoulos S. Suresh: Hertzian-crack suppression in ceramics with elastic-modulus-graded surfaces. J. Am. Ceram. Soc. 81, 2301 1998

    Article  CAS  Google Scholar 

  25. J. Luo R. Stevens: The role of residual stress on the mechanical properties of Al2O3–5 vol% SiC nano-composites. J. Eur. Ceram. Soc. 17, 1565 1997

    Article  CAS  Google Scholar 

  26. A. Paranjpye, G.E. Betz N.C. MacDonald: An analytical model for the effect of elastic modulus mismatch on laminate threshold strength. Mod. Simul. Mater. Sci. Eng. 13, 329 2005

    Article  CAS  Google Scholar 

  27. Y.S. Wang, C. He, B.J. Hockey, P.I. Lacey S.M. Hsu: Wear transitions in monolithic alumina and zirconia-alumina composites. Wear 181–183, 156 1995

    Article  Google Scholar 

  28. ISO 14704: Fine ceramics- Test method for flexural strength of monolithic ceramics at room temperature (International Organization for Standardization, Geneva, Switzerland, 2000)

  29. K. Van Acker, L. De Buyser, J.P. Celis P. Van Houtte: Characterization of thin nickel electrocoatings by the low-incident-beam-angle diffraction method. J. Appl. Crystallogr. 27, 56 1994

    Article  Google Scholar 

  30. A.V. Virkar: Determination of residual stress profile using a strain gage technique. J. Am. Ceram. Soc. 73, 2100 1990

    Article  Google Scholar 

  31. D.B. Marshall B.R. Lawn: An indentation technique for measuring stresses in tempered glass surfaces. J. Am. Ceram. Soc. 60, 86 1977

    Article  CAS  Google Scholar 

  32. Engineered Materials Handbook, Vol. 4, Ceramics and Glasses,, ASM International Materials Park, OH 1991 875

  33. H. Luthy, F. Filser, O. Loeffel, M. Schumacher, L.J. Gauckler C.H.F. Hammerle: Strength and reliability of four-unit all-ceramic posterior bridges. Dent. Mater. 21, 930 2005

    Article  Google Scholar 

  34. M. Ishitsuka, T. Sato, T. Endo, M. Shimada, H. Ohno, N. Igawa T. Nagasaki: Grain-size dependence of thermal-shock resistance of yttria-doped tetragonal zirconia polycrystals. J. Am. Ceram. Soc. 73, 2523 1990

    Article  CAS  Google Scholar 

  35. A. Krell, A. Teresiak D. Schlafer: Grain size dependent residual microstresses in submicron A12O3 and ZrO2. J. Eur. Ceram. Soc. 16, 803 1996

    Article  CAS  Google Scholar 

  36. H.H. Park, S.J.L. Kang D.N. Yoon: An analysis of the surface menisci in a mixture of liquid and deformable grains. Metall. Trans. A 17, 325 1986

    Article  Google Scholar 

  37. P.L. Flaitz J.A. Pask: Penetration of polycrystalline alumina by glass at high temperature. J. Am. Ceram. Soc. 70, 449 1987

    Article  CAS  Google Scholar 

  38. R.C. Garvie M.F. Goss: Intrinsic size dependence of the phase-transformation temperature in zirconia microcrystals. J. Mater. Sci. 21, 1253 1986

    Article  CAS  Google Scholar 

  39. R. Tandon D.J. Green: The effect of crack growth stability induced by residual compressive stresses on strength variability. J. Mater. Res. 7, 765 1992

    Article  CAS  Google Scholar 

  40. Y. Wu, Y. Zhang, G. Pezzotti J. Guo: Effect of glass additives on the strength and toughness of polycrystalline alumina. J. Eur. Ceram. Soc. 22, 159 2002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. B. Panigrahi or Seong-Jai Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakrishnan, A., Panigrahi, B.B., Chu, MC. et al. Improvement in mechanical properties of sintered zirconia (3% yttria stabilized) by glass infiltration. Journal of Materials Research 22, 2550–2557 (2007). https://doi.org/10.1557/jmr.2007.0325

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0325

Navigation