Skip to main content
Log in

Deformation-induced γ → DI-α2 phase transformation occurring in the twin-intersection region of TiAl alloys

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Deformation-induced γ → DI-α2 phase transformation was verified to occur in the twin-intersection region of a Ti–45Al–8Nb (at.%) alloy compressed at room temperature. High-resolution image observations of the deformation-induced DI-α2 phase suggested that the orientation relationship between the DI-α2 and γ phases remained the typical one: (0001)DI−α2//{111}γ, [11¯20]DI−α2//〈101]γ. The conversion of stacking sequence from ordered face-centered tetragonal to ordered nonequilibrium hexagonal close-packed structure was accomplished by the movement of a/6〈11¯2] Shockley partial dislocations on every other {111}γ plane. Compositional analysis based on energy dispersive spectra revealed that the DI-α2 phase had the same composition as the matrix γ phase. No compositional diffusion occurred because the plastic deformation was carried out at room temperature. The strong stress concentration in the intersection region was the major force to induce the γ → DI-α2 phase transformation in the process of room-temperature compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
TABLE I.
TABLE II.
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. Y.W. Kim D.M. Dimiduk: Progress in the understanding of gamma titanium aluminides. JOM 43, 40 1991

    Article  CAS  Google Scholar 

  2. Y.W. Kim: Ordered intermetallic alloys. Part III: Gamma titanium aluminides. JOM 96, 30 1994

    Article  Google Scholar 

  3. F. Appel, U. Sparka R. Wagner: Work hardening and recovery of gamma base titanium aluminides. Intermetallics 7, 325 1999

    Article  CAS  Google Scholar 

  4. K. Maruyama, M. Yamaguchi, G. Suzuki, H.L. Zhu, H.Y. Kim M.H. Yoo: Effects of lamellar boundary structural change on lamellar size hardening in TiAl alloy. Acta Mater. 52, 5185 2004

    Article  CAS  Google Scholar 

  5. F. Appel R. Wagner: Microstructure and deformation of two-phase γ-titanium aluminides. Mater. Sci. Eng., R 22, 187 1998

    Article  Google Scholar 

  6. H.A. Calderon, V. Garibay-Febles, M. Umemoto M. Yamaguchi: Mechanical properties of nanocrystalline Ti–Al–X alloys. Mater. Sci. Eng., A 329–331, 196 2002

    Article  Google Scholar 

  7. K. Kishida, D.R. Johnson, Y. Masuda, H. Umeda, H. Inui M. Yamaguchi: Deformation and fracture of PST crystals and directionally solidified ingots of TiAl-based alloys. Intermetallics 6, 679 1998

    Article  CAS  Google Scholar 

  8. Y. Wu S.K. Hwang: Microstructural refinement and improvement of mechanical properties and oxidation resistance in EPM TiAl-based intermetallics with yttrium addition. Acta Mater. 50, 1479 2002

    Article  CAS  Google Scholar 

  9. M. Kempf, M. Goken H. Vehoff: The mechanical properties of different lamellae and domains in PST-TiAl investigated with nanoindentations and atomic force microscopy. Mater. Sci. Eng., A 329–331, 184 2002

    Article  Google Scholar 

  10. F. Appel, M. Oehring R. Wagner: Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics 8, 1283 2000

    Article  CAS  Google Scholar 

  11. W.T. Marketz, F.D. Fischer H. Clemens: Deformation mechanisms in TiAl intermetallics—Experiments and modeling. Int. J. Plast. 19, 281 2003

    Article  CAS  Google Scholar 

  12. H.Y. Kim K. Maruyama: Stability of lamellar microstructure of hard orientated PST crystal of TiAl. Acta Mater. 51, 2191 2003

    Article  CAS  Google Scholar 

  13. N. Ishikawa A. Sato: In situ observation of γ → α transformation of Fe particles in a Cu–Fe alloy. Philos. Mag. A 64, 387 1991

    Article  CAS  Google Scholar 

  14. Y.N. Liu, H. Yang, G. Tan, S.C. Miyazaki, B.H. Jiang Y. Liu: Stress-induced FCC ↔ HCP martensitic transformation in CoNi. J Alloys Compds. 368, 157 2004

    Article  CAS  Google Scholar 

  15. T. Waitz H.P. Karnthaler: The fcc to hcp martensitic phase transformation in CoNi studied by TEM and AFM methods. Acta Mater. 45, 837 1997

    Article  CAS  Google Scholar 

  16. T. Mori, E.C. Oliver, M.R. Daymond P.J. Withers: Micromechanics of stress-induced martensitic transformation. Mater. Sci. Eng., A 378, 479 2004

    Article  Google Scholar 

  17. Y. Gao, J. Zhu, H.M. Shen Y.N. Wang: Stress-induced phase transformation in two-phase TiAl intermetallic alloys. Scripta Metall. Mater. 28, 651 1993

    Article  CAS  Google Scholar 

  18. C.R. Feng, D.J. Michel C.R. Crowe: The formation of Ti3Al within TiAl during the deformation of XD™ titanium aluminide. Scripta Metall. 23, 241 1989

    Article  CAS  Google Scholar 

  19. C.R. Feng, D.J. Michel C.R. Crowe: Microstructural characteristics of two-phase titanium aluminides. Mater. Sci. Eng., A 145, 257 1991

    Article  Google Scholar 

  20. J.G. Wang, L.C. Zhang, G.L. Chen, H.Q. Ye T.G. Nieh: Deformation-induced γ ↔ α2 phase transformation in a hot-forged Ti–45Al–10Nb alloy. Mater. Sci. Eng., A 239–240, 287 1997

    Google Scholar 

  21. J.G. Wang, L.C. Zhang, G.L. Chen H.Q. Ye: Study on the stress-induced γ → α2 transformation in a hot-deformation Ti–45Al–10Nb alloy by high-resolution transmission electron microscopy. Mater. Lett. 31, 179 1997

    Article  CAS  Google Scholar 

  22. C. Derder, R. Bonnet, J.M. Penisson G. Frommeyer: Evidence of stress-induced α2 → γ transformation in a Ti–30at.%Al alloy. Scripta Mater. 38, 757 1998

    Article  CAS  Google Scholar 

  23. Y.G. Zhang, F.D. Ticheaar, F.W. Schapink, Q. Xu C.Q. Chen: An evidence of stress-induced α2 → γ transformation in a γ–TiAl-based alloy. Scripta Metall. Mater. 32, 981 1995

    Article  CAS  Google Scholar 

  24. H.Q. Ye, L.L. He, R. Yu Y.H. Peng: HREM observation and compositional study of microstructure and phase transformation in TiAl-based and Cu–Al–Ni alloys. J. Electron Microsc. (Tokyo) 48(Suppl.), 1099 1999

    Google Scholar 

  25. B. Skrotzki: Crystallographic aspects of deformation twinning and consequences for plastic deformation processes in γ–TiAl. Acta Mater. 48, 851 2000

    Article  CAS  Google Scholar 

  26. Y.Q. Sun, P.M. Hazzledine J.W. Christian: Intersections of deformation twins in TiAl I. Experimental observations. Philos. Mag. A 68, 471 1993

    Article  CAS  Google Scholar 

  27. W.T. Marketz, F.D. Fischer, F. Kauffmann, G. Dehm, T. Bidlingmajer, A. Wanner H. Clemens: On the role of twinning during room temperature deformation of γ–TiAl based alloys. Mater. Sci. Eng., A 329, 177 2002

    Article  Google Scholar 

  28. J.X. Zhang H.Q. Ye: Twin intersection in a deformed TiAl. Scripta Mater. 45, 133 2000

    Article  Google Scholar 

  29. S. Wardle, I. Phan G. Hug: Analysis of twin intersections in TiAl. Philos. Mag. A 67, 497 1993

    Article  CAS  Google Scholar 

  30. Y.G. Zhang M.C. Chaturvedi: Deformation twinning intersections in a γ–TiAl-based Ti–50 at.% Al–2 at.% Mn–1 at.% Nb alloy deformed at room temperature. Philos. Mag. A 68, 915 1993

    Article  CAS  Google Scholar 

  31. W. Wolf, R. Podloucky, P. Rogl H. Erschbaumer: Atomic modeling of Nb, V, Cr, and Mn substitutions in γ–TiAl. 2: Electronic structure and site preference. Intermetallics 4, 201 1996

    Article  CAS  Google Scholar 

  32. Y.G. Zhang, Y.F. Han, G.L. Chen, J.T. Guo, X.J. Wan D. Feng: Structural Intermetallics National Defence Industry Press Beijing, China 2001 787

    Google Scholar 

  33. J.M. Howe: Atomic mechanisms of precipitate plate growth. Philos. Mag. A 56, 31 1987

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was carried out with support from Natural Science Foundation of China (NSFC) Grant No. 50271073 and the Major State Basic Research Projections of China, Grant No. 2006CB600905. The authors gratefully acknowledge these sources. We would also like to thank the reviewer for beneficial comments and discussions regarding crystallographic aspects of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C.L., Lu, W., He, L.L. et al. Deformation-induced γ → DI-α2 phase transformation occurring in the twin-intersection region of TiAl alloys. Journal of Materials Research 22, 2416–2422 (2007). https://doi.org/10.1557/jmr.2007.0323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0323

Navigation