Skip to main content
Log in

Thermochemistry of A2M3O12 negative thermal expansion materials

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The enthalpies of the monoclinic to orthorhombic transition for a series of A2M3O12 (A = Al, Cr, Fe, In, and Sc; M = Mo or W) compounds were measured by differential scanning calorimetry, and entropies of transition were estimated. The enthalpies of formation from the binary oxides at 25 °C for several A2M3O12 samples were obtained from drop solution calorimetry in molten 3Na2O·4MoO3 at 702 °C. The monoclinic and orthorhombic phases of Sc2Mo3O12 and Sc2W3O12 are the only phases that are enthalpically stable under ambient conditions. The enthalpies of formation from the oxides (ΔHf,ox) for orthorhombic Sc2Mo3O12 and Sc2W3O12 are −47.2 ± 2.1 kJ/mol and −8.5 ± 2.7 kJ/mol, respectively. For Fe2Mo3O12, In2Mo3O12, and In2W3O12, ΔHf,ox values are 51.5 ± 4.5, 7.4 ± 2.9, and 44.5 ± 2.3 kJ/mol, respectively. These phases are entropically stabilized and/or metastable. Enthalpies of formation for phases that could not be measured by calorimetry have been estimated from the enthalpies of transition or trends in the enthalpies of formation. In general, the monoclinic phase is slightly enthalpically stabilized over the orthorhombic phase, while transition to the orthorhombic phase is entropically favored. This confirms that the orthorhombic phase is stable at high temperatures, the monoclinic is stable at low temperatures, and the monoclinic to orthorhombic transition is reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I.
TABLE II.
FIG. 2
TABLE III.
TABLE IV.
TABLE V.
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. A.W. Sleight: Negative thermal expansion materials. Curr. Opin. Solid State Mater. Sci. 3, 128 1998

    Article  CAS  Google Scholar 

  2. A.W. Sleight: Isotropic negative thermal expansion. Ann. Rev. Mater. Sci. 28, 29 1998

    Article  CAS  Google Scholar 

  3. J.S.O. Evans, T.A. Mary A.W. Sleight: Negative thermal expansion materials. Phys. B (Amsterdam) 241–243, 311 1998

    Google Scholar 

  4. J.S.O. Evans: Negative thermal expansion materials. J. Chem. Soc., Dalton Trans. 3317 1999

    Google Scholar 

  5. J.S.O. Evans, T.A. Mary A.W. Sleight: Negative thermal expansion in a large molybdate and tungstate family. J. Solid State Chem. 133, 580 1997

    Article  CAS  Google Scholar 

  6. J.S.O. Evans, T.A. Mary A.W. Sleight: Negative thermal expansion in Sc2(WO4)3.J. Solid State Chem. 137, 148 1998

    Article  CAS  Google Scholar 

  7. P.M. Forster, A. Yokochi A.W. Sleight: Enhanced negative thermal expansion in Lu2W3O12.J. Solid State Chem. 140, 157 1998

    Article  CAS  Google Scholar 

  8. N. Imanaka, M. Hiraiwa, G. Adachi, H. Dabkowska A. Dabkowski: Thermal contraction in Al2(WO4)3 single crystal. J. Cryst. Growth 220, 176 2000

    Article  CAS  Google Scholar 

  9. D.A. Woodcock, P. Lightfoot C. Ritter: Negative thermal expansion in Y2(WO4)3.J. Solid State Chem. 149, 92 2000

    Article  CAS  Google Scholar 

  10. N. Imanaka G-y. Adachi: Rare earth contribution in solid state electrolytes, especially in the chemical sensor field. J. Alloys Compd. 250, 492 1997

    Article  CAS  Google Scholar 

  11. Y. Okazaki, T. Ueda, S. Tamura, N. Imanaka G. Adachi: Trivalent Sc3+ ion conduction in the Sc2(WO4)3-Sc2(MoO4)3 solid solution. Solid State Ionics 136–137, 437 2000

    Article  Google Scholar 

  12. G. Adachi, N. Imanaka S. Tamura: Rare earth ion conduction in solids. J. Alloys Compd. 323–324, 534 2001

    Article  Google Scholar 

  13. N. Imanaka G-Y. Adachi: Rare earth ion conduction in tungstate and phosphate solids. J. Alloys Compd. 344, 137 2002

    Article  CAS  Google Scholar 

  14. N. Imanaka, Y. Kobayashi G-y. Adachi: A direct evidence for trivalent ion conduction in solids. Chem. Lett. (Jpn.) 6, 433 1995

    Article  Google Scholar 

  15. E. Gallucci, C. Goutaudier, F. Bourgeois, G. Boulon M.T. Cohen-Adad: Comprehensive study of third-order nonlinear tungstates: Relationship between structural and vibrational properties in Raman shifters. J. Solid State Chem. 163, 506 2002

    Article  CAS  Google Scholar 

  16. R.A. Secco, H. Liu, N. Imanaka G. Adachi: Pressure-induced amorphization in negative thermal expansion Sc2(WO4)3. J. Mater. Sci. Lett. 20, 1339 2001

    Article  CAS  Google Scholar 

  17. R.A. Secco, H. Liu, N. Imanaka G. Adachi: Anomalous ionic conductivity of Sc2(WO4)3 mediated by structural changes at high pressures and temperatures. J. Phys. Condens. Matter 14, 11285 2002

    Article  CAS  Google Scholar 

  18. R.A. Secco, H. Liu, N. Imanaka, G. Adachi M.D. Rutter: Electrical conductivity and amorphization of Sc2(WO4)3 at high pressures and temperatures. J. Phys. Chem. Solids 63, 425 2002

    Article  CAS  Google Scholar 

  19. T. Varga, A.P. Wilkinson, C. Lind, W.A. Bassett C-S. Zha: In situ high-pressure synchrotron x-ray diffraction study of Sc2W3O12 at up to 10 GPa. Phys. Rev. B 71, 214106 2005

    Article  CAS  Google Scholar 

  20. T. Varga, A.P. Wilkinson, J.D. Jorgensen S. Short: Neutron powder diffraction study of the orthorhombic to monoclinic transition in Sc2W3O12 on compression. Solid State Sci. 8, 289 2006

    Article  CAS  Google Scholar 

  21. M.T. Weller, P.F. Henry C.C. Wilson: An analysis of the thermal motion in the negative thermal expansion material Sc2(WO4)3 using isotopes in neutron diffraction. J. Phys. Chem. B 104, 12224 2000

    Article  CAS  Google Scholar 

  22. M. Maczka, K. Hermanowicz J. Hanuza: Phase transition and vibrational properties of A2(BO4)3 compounds (A = Sc, In; B = Mo, W). J. Molec. Struct. 744–747, 283 2005

    Article  CAS  Google Scholar 

  23. N. Garg, C. Murli, A.K. Tyagi S.M. Sharma: Phase transitions in Sc2(WO4)3 under high pressure. Phys. Rev. B 72, 064106 2005

    Article  CAS  Google Scholar 

  24. J.S.O. Evans T.A. Mary: Structural phase transitions and negative thermal expansion in Sc2(MoO4)3. Int. J. Inorg. Mater. 2, 143 2000

    Article  CAS  Google Scholar 

  25. W. Paraguassu, M. Maczka, A.G. Souza Filho, P.T.C. Freire, J. Mendes Filho, F.E.A. Melo, L. Macalik, L. Gerward, J. Staun Olsen, A. Waskowska J. Hanuza: Pressure-induced structural transformations in the molybdate Sc2(MoO4)3. Phys. Rev. B 69, 094111(1 2004

    Article  CAS  Google Scholar 

  26. A.K. Arora, R. Nithya, T. Yagi, N. Miyajima T.A. Mary: Two-stage amorphization of scandium molybdate at high pressure. Solid State Commun. 129, 9 2004

    Article  CAS  Google Scholar 

  27. T. Varga, A.P. Wilkinson, C. Lind, W.A. Bassett C-S. Zha: High pressure synchrotron x-ray powder diffraction study of Sc2Mo3O12 and Al2W3O12. J. Phys. Condens. Matter 17, 4271 2005

    Article  CAS  Google Scholar 

  28. A.K. Arora, T. Yagi, N. Miyajima T.A. Mary: Amorphization and decomposition of scandium molybdate at high pressure. J. Appl. Phys. 97, 013508 2005

    Article  CAS  Google Scholar 

  29. T.R. Ravindran, V. Sivasubramanian A.K. Arora: Low temperature Raman spectroscopic study of scandium molybdate. J. Phys. Condens. Matter 17, 277 2005

    Article  CAS  Google Scholar 

  30. A.K. Tyagi, S.N. Achary M.D. Mathews: Phase transition and negative thermal expansion in A2(MoO4)3 system (A = Fe3+, Cr3+ and Al3+). J. Alloys Compd. 339, 207 2002

    Article  CAS  Google Scholar 

  31. S.N. Achary, G.D. Mukherjee, A.K. Tyagi S.N. Vaidya: Preparation, thermal expansion, high pressure and high temperature behavior of Al2(WO4)3. J. Mater. Sci. 37, 2501 2002

    Article  CAS  Google Scholar 

  32. G.D. Mukherjee, S.N. Achary, A.K. Tyagi S.N. Vaidya: High pressure AC resistivity and compressibility study on Al2(WO4)3. J. Phys. Chem. Solids 64, 611 2003

    Article  CAS  Google Scholar 

  33. M. Maczka, W. Paraguassu, A.G. Souza Filho, P.T.C. Freire, J. Mendes Filho, F.E.A. Melo J. Hanuza: High-pressure Raman study of Al2(WO4)3. J. Solid State Chem. 177, 2002 2004

    Article  CAS  Google Scholar 

  34. G.D. Mukherjee, V. Vijaykumar, S.N. Achary, A.K. Tyagi B.K. Godwal: Phase transitions in Al2(WO4)3: High pressure investigations of low frequency dielectric constant and crystal structure. J. Phys. Condens. Matter 16, 7321 2004

    Article  CAS  Google Scholar 

  35. N. Garg, V. Panchal, A.K. Tyagi S.K. Sharma: Pressure-induced phase transitions in Al2(WO4)3. J. Solid State Chem. 178, 998 2005

    Article  CAS  Google Scholar 

  36. K. Aizu: Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B 2, 754 1970

    Article  Google Scholar 

  37. K. Nassau, H.J. Levinstein G.M. Loiacono: Trivalent rare-earth tungstates of the type M2(WO4)3. J. Am. Ceram. Soc. 47, 363 1964

    Article  CAS  Google Scholar 

  38. K. Nassau, H.J. Levinstein G.M. Loiacono: A comprehensive study of trivalent tungstates and molybdates of the type L2(MO4)3. J. Phys. Chem. Solids 26, 1805 1965

    Article  CAS  Google Scholar 

  39. A.W. Sleight L.H. Brixner: A new ferroelastic transition in some A2(MO4)3 molybdates and tungstates. J. Solid State Chem. 7, 172 1973

    Article  CAS  Google Scholar 

  40. D.A. Fleming, D.W. Johnson P.J. Lemaire: Article comprising a temperature compensated optical fiber refractive index grating, U.S. Patent No. 5 694 503 (1997)

    Google Scholar 

  41. C. Verdon D.C. Dunand: High-temperature reactivity in the ZrW2O8–Cu system. Scripta Mater. 36, 1075 1997

    Article  CAS  Google Scholar 

  42. D.A. Fleming, P.J. Lemaire D.W. Johnson: Temperature compensated optical fiber refractive index grating. European Patent 97-306798, 19970902 (1998)

    Google Scholar 

  43. H. Holzer D.C. Dunand: Phase transformation and thermal expansion of Cu/ZrW2O8 metal matrix composites. J. Mater. Res. 14, 780 1999

    Article  CAS  Google Scholar 

  44. D.K. Balch D.C. Dunand: Copper-zirconium tungstate composites exhibiting low and negative thermal expansion influenced by reinforcement phase transformations. Metall. Mater. Trans. A 35A, 1159 2004

    Article  CAS  Google Scholar 

  45. V.M. Amosov V.E. Plyushchev: Thermochemistry of tungstates of scandium subgroup elements. Neorg. Mater. 4, 1309 1968

    CAS  Google Scholar 

  46. L.A. Reznitskii: Enthalpy factor of stabilization and a high cationic conductivity of molybdates M2(MoO4)3 with Sc2(WO4)3-type structure. Zh. Fizicheskoi Khimii 76, 1528 2002

    CAS  Google Scholar 

  47. V. Sivasubramanian, T.R. Ravindran A.K. Arora: Structural phase transition in indium tungstate. J. Appl. Phys. 96, 387 2004

    Article  CAS  Google Scholar 

  48. A. Navrotsky: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 89 1977

    Article  CAS  Google Scholar 

  49. A. Navrotsky: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 1997

    Article  CAS  Google Scholar 

  50. A. Navrotsky O.J. Kleppa: A calorimetric study of molten Na2MoO4–MoO3 mixtures at 970 °K. Inorg. Chem. 6, 2119 1967

    Article  CAS  Google Scholar 

  51. J.H. Cheng A. Navrotsky: Enthalpies of formation of LaBO3 perovskites (B = Al, Ga, Sc, and In). J. Mater. Res. 18, 2501 2003

    Article  CAS  Google Scholar 

  52. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distancesin halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 1976

    Article  Google Scholar 

  53. WebElements, http://www.webelements.com, (University of Sheffield and WebElements Ltd., Sheffield, UK, 1993–2007): Accessed April 2, 2007.

  54. A. Navrotsky: Repeating patterns in mineral energetics. Am. Mineral. 79, 589 1994

    CAS  Google Scholar 

  55. T. Varga, C. Lind, A.P. Wilkinson, H. Xu, C.E. Lesher A. Navrotsky: Heats of formation for several crsytalline polymorphs and pressure-induced amorphous forms of AM2O8 (A = Zr, Hf) and ZrW2O8. Chem. Mater. 19, 468 2007

    Article  CAS  Google Scholar 

  56. JADE: (Materials Data, Inc., Livermore, CA, 2002)

  57. A.L. Allred E.G. Rochow: A scale of electronegativity based on electrostatic force. J. Inorg. Nucl. Chem. 5, 264 1958

    Article  CAS  Google Scholar 

  58. W.T.A. Harrison: Crystal structures of paraelastic aluminum molybdate and ferric molybdate, β–Al2(MoO4)3 and β–Fe2(MoO4)3. Mater. Res. Bull. 30, 1325 1995

    Article  CAS  Google Scholar 

  59. J. Majzlan, A. Navrotsky B.J. Evans: Thermodynamics and crystal chemistry of the hematite-corundum solid solution and the FeAlO3 phase. Phys. Chem. Miner. 29, 515 2002

    Article  CAS  Google Scholar 

  60. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton S. Petersen: FactSage thermochemical software and databases. CALPHAD 26, 189 2002

    Article  CAS  Google Scholar 

  61. M.R. Ranade, F. Tessier, A. Navrotsky R. Marchand: Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN. J. Mater. Res. 16, 2824 2001

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partly supported by the National Science Foundation under Grant No. DMR 06-01892.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamas Varga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, T., Moats, J.L., Ushakov, S.V. et al. Thermochemistry of A2M3O12 negative thermal expansion materials. Journal of Materials Research 22, 2512–2521 (2007). https://doi.org/10.1557/jmr.2007.0311

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0311

Navigation