Skip to main content
Log in

Phase change materials: From structures to kinetics

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Phase change materials possess a unique combination of properties, which includes a pronounced property contrast between the amorphous and crystalline state, i.e., high electrical and optical contrast. In particular, the latter observation is indicative of a considerable structural difference between the amorphous and crystalline state, which furthermore is characterized by a very high vacancy concentration unknown from common semiconductors. Through the use of ab initio calculations, this work shows how the electric and optical contrast is correlated with structural differences between the crystalline and the amorphous state and how the vacancy concentration controls the optical properties. Furthermore, crystal nucleation rates and crystal growth velocities of various phase change materials have been determined by atomic force microscopy and differential thermal analysis. In particular, the observation of different recrystallization mechanisms upon laser heating of amorphous marks is explained by the relative difference of just three basic parameters among these alloys, namely, the melt-crystalline interfacial energy, the entropy of fusion, and the glass transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
TABLE I.

Similar content being viewed by others

References

  1. S.R. Ovshinsky: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450 1968

    Article  Google Scholar 

  2. G. Zhou: Material aspects in phase change optical recording. Mater. Sci. Eng., A 304–306, 73 2001

    Article  Google Scholar 

  3. M. Wuttig: Phase-change materials—Towards a universal memory? Nat. Mater. 4, 265 2005

    Article  CAS  Google Scholar 

  4. N. Yamada: Erasable phase-change optical materials. MRS Bull. 21(9), 48 1996

    Article  Google Scholar 

  5. I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz M. Wuttig: Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. J. Appl. Phys. 87, 4130 2000

    Article  CAS  Google Scholar 

  6. M. Lankhorst, B. Ketelaars R. Wolters: Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4, 347 2005

    Article  CAS  Google Scholar 

  7. H.R. Philipp H. Ehrenreich: Optical properties of semiconductors. Phys. Rev. 129, 1550 1963

    Article  CAS  Google Scholar 

  8. J. Stuke G. Zimmerer: Optical properties of amorphous 3–5 compounds. 1. Experiment. Phys. Status Solidi B—Basic Res. 49, 513 1972

    Article  CAS  Google Scholar 

  9. W. Wełnic, S. Botti, L. Reining M. Wuttig Origin of the optical contrast in phase change materials. Phys. Rev. Lett. 98, 236403 2007

    Article  CAS  Google Scholar 

  10. A.V. Kolobov, P. Fons, J. Tominaga, A.L. Ankudinov, S.N. Yannopoulos K.S. Andikopoulos: Crystallization-induced short-range order changes in amorphous GeTe. J. Phys. Condens. Matter. 16, 5103 2004

    Article  CAS  Google Scholar 

  11. A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga T. Urugal: Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 3, 703 2004

    Article  CAS  Google Scholar 

  12. J. Kalb, M. Wuttig F. Spaepen: Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748 2007

    Article  CAS  Google Scholar 

  13. W. Wełnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blûgui M. Wuttig: Unraveling the interplay of local structure and physical properties in phase-change materials. Nat. Mater. 5, 56 2006

    Article  CAS  Google Scholar 

  14. M. Luo M. Wuttig: The dependence of crystal structure of Te-based phase-change materials on the number of valence electrons. Adv. Mat. 16, 439 2004

    Article  CAS  Google Scholar 

  15. R. Peierls: Quantum Theory of Solids Oxford University Press Oxford, UK 1956

    Google Scholar 

  16. M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gilleßen R. Dronskowski: The role of vacancies and local distortions in the design of new phase change materials. Nat. Mater. 6, 122 2007

    Article  CAS  Google Scholar 

  17. T. Matsunaga, Y. Kubota N. Yamada: Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in the GeTe-Sb2Te3 pseudobinary systems. Acta Crystallogr. B 60, 685 2004

    Article  CAS  Google Scholar 

  18. T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubote, Y. Tabata M. Takata: Single structure widely distributed in a GeTe-Sb2Te3 pseudobinary system: A rocksalt structure is retained by intrinsically containing an enormous number of vacancies within its crystal. Inorg. Chem. 45, 2235 2006

    Article  CAS  Google Scholar 

  19. S. Shamoto, T. Matsumaga, N. Yamada, Th. Proffen, J.W. Richardson Jr., J.H. Chung T. Egani: Large displacement of germanium atoms in crystalline Ge2Sb2Te5. Appl. Phys. Lett. 86, 081904 2005

    Article  CAS  Google Scholar 

  20. F. El-Mellouhi, N. Mousseau P. Ordejon: Sampling the diffusion paths of a neutral vacancy in silicon with quantum mechanical calculations. Phys. Rev. B 70, 205202 2004

    Article  CAS  Google Scholar 

  21. J-P. Gaspard R. Ceolin: Hume-rothery rule in v-vi compounds. Solid State Comm. 84, 839 1992

    Article  CAS  Google Scholar 

  22. J-P. Gaspard, A. Pellegatti, F. Marinelli C. Bichara: Peierls instabilities in covalent structures I. Electronic structure, cohesion and the Z = 8−N rule. Philos. Mag. B 77, 727 1998

    Article  CAS  Google Scholar 

  23. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira M. Takao: Rapid phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849 1991

    Article  CAS  Google Scholar 

  24. S. Hudgens B. Johnson: Overview of phase-change chalcogenide nonvolatile memory technology. MRS Bull. 29(11), 829 2004

    Article  Google Scholar 

  25. J. Christian Transformation in Metals and Alloys 2 ed. Pergamon Press Oxford, UK 1975

    Google Scholar 

  26. D. Herlach: Non-equilibrium solidification of undercooled metallic melts. Mater. Sci. Eng., R 12, 177 1994

    Article  Google Scholar 

  27. K. Kelton: Crystal nucleation in liquids and glasses. Solid State Phys. 45, 75 1991

    Article  CAS  Google Scholar 

  28. J. Kalb, F. Spaepen M. Wuttig: Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording. J. Appl. Phys. 98, 054910 2005

    Article  CAS  Google Scholar 

  29. V. Weidenhof, I. Friedrich, S. Ziegler M. Wuttig: Laser induced crystallization of amorphous Ge2Sb2Te5 films. J. Appl. Phys. 89, 3168 2001

    Article  CAS  Google Scholar 

  30. G. Ruitenberg, A. Petford-Long R. Doole: Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films. J. Appl. Phys. 92, 3116 2002

    Article  CAS  Google Scholar 

  31. S. Privitera, C. Bongiorno, E. Rimini R. Zonca: Crystal nucleation and growth processes in Ge2Sb2Te5. Appl. Phys. Lett. 84, 4448 2004

    Article  CAS  Google Scholar 

  32. B. Kooi J.D. Hosson: On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage. J. Appl. Phys. 95, 4714 2004

    Article  CAS  Google Scholar 

  33. C. Peng, L. Cheng M. Mansuripur: Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical-recording media. J. Appl. Phys. 82, 4183 1997

    Article  CAS  Google Scholar 

  34. S. Senkader C. Wright: Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices. J. Appl. Phys. 95, 504 2004

    Article  CAS  Google Scholar 

  35. A. Sheila T. Schlesinger: Modeling thermal cross talk and overwrite jitter in growth dominant phase change optical-recording media at high data rates. J. Appl. Phys. 91, 2803 2002

    Article  CAS  Google Scholar 

  36. E. Meinders, H. Borg, M. Lankhorst, J. Hellmig A. Mijiritskii: Numerical simulation of mark formation in dual-stack phase-change recording. J. Appl. Phys. 91, 9794 2002

    Article  CAS  Google Scholar 

  37. J. Coombs, A. Jongenelis, W. van Es-Spiekman B. Jacobs: Laser-induced crystallization phenomena in GeTe-based alloys. ii. Composition dependence of nucleation and growth. J. Appl. Phys. 82, 4183 1997

    Article  Google Scholar 

  38. H.J. Borg, M. Van Schijndel, J.C.N. Rijpers, H.H.R. Lankhoist, G. Zhou, M.J. Dekker, I.P.D. Ubbens M. Kuijper: Phase-change media for high-numericalaperture and blue-wavelength recording. Jap. J. Appl. Phys. 40, 1592 2001

    Article  CAS  Google Scholar 

  39. L. van Pieterson, M. van Schijndel, J. Rijpers M. Kaiser: Te-free, Sb-based phase-change materials for high-speed rewritable optical recording. Appl. Phys. Lett. 83, 1373 2003

    Article  CAS  Google Scholar 

  40. V. Weidenhof, I. Friedrich, S. Ziegler M. Wuttig: Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5. J. Appl. Phys. 86, 5879 1999

    Article  CAS  Google Scholar 

  41. J. Kalb, F. Spaepen M. Wuttig: Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett. 84, 5240 2004

    Article  CAS  Google Scholar 

  42. J. Kalb, C. Wen, F. Spaepen, H. Dieker M. Wuttig: Crystal morphology and nucleation in thin films of amorphous Te alloys used for phase change recording. J. Appl. Phys. 98, 054902 2005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the 6th Framework Program of the European Commission within the CAMELS-Project (Contract No. IST-3-017406) is gratefully acknowledged. Furthermore, we would like to thank R. Dronskowski and M. Gillessen from the Institut für Anorganische Chemie of the RWTH Aachen for fruitful discussions. One of the authors (J.A. Kalb) acknowledges the Studienstiftung des Deutschen Volkes and the Deutscher Akademischer Auslandsdienst for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Wełnic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wełnic, W., Kalb, J.A., Wamwangi, D. et al. Phase change materials: From structures to kinetics. Journal of Materials Research 22, 2368–2375 (2007). https://doi.org/10.1557/jmr.2007.0301

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0301

Navigation