Skip to main content
Log in

Making lipid membranes even tougher

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Biosensors based on lipid membranes promise an inexpensive and versatile platform for application in many fields of molecular sensing. An extensive review of the applications for tethered membranes was reported in the July 2006 MRS Bulletin [A.N. Parikh and J.T. Groves, Materials science of supported lipid membranes. MRS Bull.31(8), 507 (2006)]. The commercial use to which tethered lipid membranes have been applied has been limited by their stability under long-term storage. This report describes a novel membrane construct that is stable at room temperature for months, eliminates the mobile lipid phase present in lipid bilayers, and is robust against detergents under conditions that would destroy a lipid bilayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A.N. Parikh J.T. Groves: Materials science of supported lipid membranes. MRS Bull. 31(8), 507 2006

    Article  Google Scholar 

  2. S.M.K. Davidson S.L. Regen: Nearest-neighbor recognition in phospholipid membranes. Chem. Rev. 97, 1269 1997

    Article  CAS  Google Scholar 

  3. A. Ulman: Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533 1996

    Article  CAS  Google Scholar 

  4. A.L. Ottova H.T. Tien: Formation and structure of self-assembled monolayers. Bioelectrochem. Bioenerg. 42, 141 1997

    Article  CAS  Google Scholar 

  5. K. Seifert, K. Fendler E. Bamberg: Charge transport by ion translocating membrane proteins on solid supported membranes. Biophys. J. 64, 384 1993

    Article  CAS  Google Scholar 

  6. H. Lang, C. Duschl H. Vogel: A new class of thiolipids for the attachment of lipid bilayers on gold surfaces. Langmuir 10, 197 1994

    Article  CAS  Google Scholar 

  7. D.P. Nikolelis, C.G. Siontorou, U.J. Krull P.L. Katrivanos: Ammonium ion minisensors from self-assembled bilayer lipid membranes using gramicidin as an ionophore—Modulation of ammonium selectivity by platelet-activating factor. Anal. Chem. 68, 1735 1996

    Article  CAS  Google Scholar 

  8. N. Boden, R.B. Bushby, S. Clarkson, S.D. Evans, P.F. Knowles A. Marsh: The design and synthesis of simple molecular tethers for binding biomembranes to a gold surface. Tetrahedron 53, 10939 1997

    Article  CAS  Google Scholar 

  9. G.M. Whitesides: Surveying for surfaces that resist the adsorption of proteins. J. Am. Chem. Soc. 122, 8303 2000

    Article  Google Scholar 

  10. R. Naumann, A. Jonczyk, R. Kopp, J. van Esch, H. Ringsdorf, W. Knoll P. Graber: Incorporation of membrane proteins in solid-supported lipid layers. Angew. Chem., Int. Ed. Engl. 34, 2056 1995

    Article  CAS  Google Scholar 

  11. S-K. Lee, L.G. Cascao-Pereira, R.F. Sala, S.P. Holmes, K.J. Ryan T. Becker: Ion channel switch array: A biosensor for detecting multiple pathogens. Industrial Biotechnol. 1, 1 2005

    Article  Google Scholar 

  12. S. Daniel, A.F. Cremer P.S. Cremer: Making lipid membranes rough, tough, and ready to hit the road. MRS Bull. 31, 536 2006

    Article  CAS  Google Scholar 

  13. B.A. Cornell: Membrane-based biosensors in Optical Biosensors: Present and Future, edited by F. Ligler and C. Rowe Taitt Elsevier Science Press 2002 Chap. 15, in particular Fig. 25

    Google Scholar 

  14. R.J. Pace, V.L. Braach-Maksvytis, L.G. King, P.D. Osman, B. Raguse, L. Wieczorek B.A. Cornell: Gated ion channel biosensor: A functioning nanomachine. Proc. SPIE. 3270, 50 1998

    Article  CAS  Google Scholar 

  15. B.A. Cornell, V.L.B. Braach-Maksvytis, L.G. King, P.D.J. Osman, B. Raguse, L. Wieczorek R.J. Pace: A biosensor that uses ion-channel switches. Nature 387, 580 1997

    Article  CAS  Google Scholar 

  16. G.E. Woodhouse, L.G. King, L. Wieczorek B.A. Cornell: Kinetics of the competitive response of receptors immobilised to ion-channels which have been incorporated into a tethered bilayer. Faraday Discuss. 111, 247 1998

    Article  CAS  Google Scholar 

  17. B. Raguse, P.N. Culshaw, K. Raval J.K. Prashar: The synthesis of archaebacterial lipid analogues. Tett. Lett. 41, 2971 2000

    Article  CAS  Google Scholar 

  18. B. Raguse, V. Braach-Maksvytis, B.A. Cornell, L.G. King, P.D.J. Osman, R.J. Pace L. Wieczorek: Tethered lipid bilayer membranes: Formation and ionic reservoir characterization. Langmuir 14, 648 1998

    Article  CAS  Google Scholar 

  19. G. Hemsley D. Busath: Small iminium ions block gramicidin channels in lipid bilayers. Biophys. J. 59, 901 1991

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Cornell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prashar, J., Sharp, P., Scarffe, M. et al. Making lipid membranes even tougher. Journal of Materials Research 22, 2189–2194 (2007). https://doi.org/10.1557/jmr.2007.0288

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0288

Navigation