Skip to main content
Log in

Further experiments and modeling for microscale compression molding of metals at elevated temperatures

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Replication of metallic high-aspect-ratio microscale structures (HARMS) by compression molding has been demonstrated recently. Molding replication of metallic HARMS can potentially lead to low-cost fabrication of a wide variety of metal-based microdevices. Understanding the mechanics of metal micromolding is critical for assessing the capabilities and limitations of this replication technique. This paper presents results of instrumented micromolding of Al. Measured molding response was rationalized with companion high-temperature tensile testing of Al using a simple mechanics model of the micromolding process. The present results suggest that resisting pressure on the mold insert during micromolding is governed primarily by the yield stress of the molded metal at the molding temperature and a frictional traction on the sides of the insert. The influence of strain rate is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. D.B. Tuckerman R.F.W. Pease: High performance heat sinking for VLSI. IEEE Elect. Dev. Lett. 2, 126 1981

    Article  Google Scholar 

  2. I.J. Busch-Vishniac: The case for magnetically driven microactuators. Sens. Actuators, A 33, 207 1992

    Article  Google Scholar 

  3. F. Arias, S.R.J. Oliver, B. Xu, R.E. Homlin G.M. Whitesides: Fabrication of metallic heat exchangers using sacrificial polymer mandrils. JMEMS 10, 107 2001

    CAS  Google Scholar 

  4. J.D. Williams W. Wang: Microfabrication of an electromagnetic power relay using SU-8 based UV-LIGA technology. Microsystem Technol. 10, 699 2004

    Article  CAS  Google Scholar 

  5. E.W. Becker, W. Ehrfeld, D. Munchmeyer, H. Betz, A. Heuberger, S. Pongratz, W. Glashauser, H.J. Michel V.R. Siemens: Production of separation-nozzle systems for uranium enrichment by a combination of x-ray-lithography and galvanoplastics. Naturwissenschaften 69, 520 1982

    Article  Google Scholar 

  6. M. Madou: Fundamentals of Microfabrication CRC Press, Boca Raton, FL 2000

    Google Scholar 

  7. M. Heckele, W. Bacher K.D. Muller: Hot embossing—The molding technique for plastic microstructures. Microsystem Technol. 4, 122 1998

    Article  Google Scholar 

  8. D.M. Cao, W.J. Meng K.W. Kelly: High-temperature instrumented microscale compression molding of Pb. Microsystem Technol. 10, 323 2004

    Article  CAS  Google Scholar 

  9. D.M. Cao, D. Guidry, W.J. Meng K.W. Kelly: Molding of Pb and Zn with microscale mold inserts. Microsystem Technol. 9, 559 2003

    Article  CAS  Google Scholar 

  10. D.M. Cao W.J. Meng: Microscale compression molding of Al with surface engineered LiGA inserts. Microsystem Technol. 10, 662 2004

    Article  CAS  Google Scholar 

  11. D.M. Cao, J. Jiang, W.J. Meng, J.C. Jiang W. Wang: Fabrication of high-aspect-ratio microscale Ta mold inserts with micro-electrical-discharge-machining. Microsystem Technol. 13, 503 2007

    Article  CAS  Google Scholar 

  12. D.M. Cao, T. Wang, B. Feng, W.J. Meng K.W. Kelly: Amorphous hydrocarbon based thin films for high-aspect-ratio MEMS applications. Thin Solid Films 398/399, 553 2001

    Article  Google Scholar 

  13. D.M. Cao, W.J. Meng, S.J. Simko, G.L. Doll, T. Wang K.W. Kelly: Conformal deposition of Ti-C:H coatings over high-aspect-ratio micro-scale structures and tribological characteristics. Thin Solid Films 429, 46 2003

    Article  CAS  Google Scholar 

  14. D.M. Cao, J. Jiang, R. Yang W.J. Meng: Fabrication of high-aspect-ratio microscale mold inserts by parallel μEDM. Microsystem Technol. 12, 839 2006

    Article  CAS  Google Scholar 

  15. W.J. Meng, D.M. Cao G.B. Sinclair: Stresses during micromolding of metals at elevated temperatures: Pilot experiments and a simple model. J. Mater. Res. 20, 161 2005

    Article  CAS  Google Scholar 

  16. ASM Metals Handbook 9th ed. ASM, Metals Park, OH 1979 Vol. 2, 799

  17. D.M. Cao, J. Jiang W.J. Meng: Metal micromolding with surface engineered inserts, in Surface Engineering for Manufacturing Applications, edited by S.J. Bull, P.R. Chalker, S-C. Chen, W.J. Meng, and R. Maboudian (Mater. Res. Soc. Symp. Proc. 890, Warrendale, PA, 2006), p. 99

  18. D. Tabor: The Hardness of Metals Clarendon Press, Oxford, UK 1951

    Google Scholar 

  19. G.B. Sinclair, P.S. Follansbee K.L. Johnson: Quasi-static normal indentation of an elasto-plastic half-space by a rigid sphere-II: Results. Int. J. Solids Struct. 21, 865 1985

    Article  Google Scholar 

  20. J. Jiang, G.B. Sinclair W.J. Meng: Preliminary finite element analyses of the elasto-plastic response of substrates indented by periodic arrays of smooth strip punches, Report ME-MA2-06, Mechanical Engineering Department Louisiana State University, Baton Rouge, LA 2006

    Google Scholar 

  21. ANSYS Advanced Analysis Techniques, Revision 10.0 ANSYS Inc., Cannonsburg, PA 2006

  22. I.Y. Steuermann: Contact Problem of the Theory of Elasticity Gostekhteoretizdat, Moscow, U.S.S.R. 1949

    Google Scholar 

  23. J. Weertman: Theory of steady-state creep based on dislocation climb. J. Appl. Phys. 26(10), 1213 1955

    Article  CAS  Google Scholar 

  24. D.A. Porter K.E. Easterling: Phase Transformations in Metals and Alloys 2nd ed. CRC Press, Boca Raton, FL 2004

    Google Scholar 

  25. J. Weertman: Creep of polycrystalline aluminum as determined from strain rate tests. J. Mech. Phys. Solids 4, 230 1956

    Article  Google Scholar 

  26. H.J. Frost M.F. Ashby: Deformation Mechanism Maps, the Plasticity and Creep of Metals and Ceramics Pergamon Press, Oxford, UK 1982

    Google Scholar 

  27. A. Nadai: Theory of Flow and Fracture of Solids McGraw Hill, New York 1963

    Google Scholar 

Download references

ACKNOWLEDGMENTS

J. Jiang, W.J. Meng, and G.B. Sinclair gratefully acknowledge partial project support from the National Science Foundation through Grant Nos. DMI-0400061 and DMI-0556100. W.J. Meng and J. Jiang also gratefully acknowledge additional support from Louisiana Board of Regents through Contract No. LEQSF(2004-07)-RD-B-06. The research work at Oak Ridge National Laboratory was sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technology Program, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the United States Department of Energy under Contract No. DE-AC05-00OR22725. Technical assistance in high-temperature testing by C.O. Stevens and D.B. Glanton is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.J. Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, J., Meng, W., Sinclair, G. et al. Further experiments and modeling for microscale compression molding of metals at elevated temperatures. Journal of Materials Research 22, 1839–1848 (2007). https://doi.org/10.1557/jmr.2007.0252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0252

Navigation