Skip to main content
Log in

Initial plasticity onset in Zr- and Hf-rich bulk metallic glasses during instrumented indentation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Sudden jumps in nanoindentation load-displacement curves of bulk metallic glasses (BMGs) signify the onset of plastic deformation. These events are investigated on varying compositions of Zr- and Hf-rich BMGs. Load-versus-displacement graphs for spherical indentations are analyzed to determine displacement, load, intensity of deformation, energy per volume, energy loss, and pressure corresponding to these key locations. Attention is focused on pressure, energy loss, and energy per volume at initial plasticity in response to varying strain rates, indenter tip radii, preload, and material composition. Energy loss was found to correlate with preload. The Zr-rich metallic glass was found to plastically deform in response to smaller loads than Hf-rich specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Klement, R.H. Willens, and P. Duwez: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960).

    Article  CAS  Google Scholar 

  2. W.L. Johnson: Bulk amorphous metal: An emerging engineering material. J. Min. Met. Mater. Soc. 54, 40 (2002).

    Article  CAS  Google Scholar 

  3. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    CAS  Google Scholar 

  4. X. Gu, T. Jiao, L.J. Kecskes, R.H. Woodman, C. Fan, K.T. Ramesh, and T.C. Hufnagel: Crystallization and mechanical behavior of (Hf, Zr)-Ti-Cu-Ni-Al metallic glasses. J. Non-Cryst. Solids 317, 112 (2003).

    Article  CAS  Google Scholar 

  5. N. Nagendra, U. Ramamurty, T.T. Goh, and Y. Li: Effect of crystallinity on the impact toughness of a La-based bulk metallic glass. Acta Mater. 48, 2603 (2000).

    Article  CAS  Google Scholar 

  6. C.J. Gilbert, V. Schroeder, and R.O. Ritchie: Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall. Mater. Trans. A 30, 1739 (1999).

    Article  Google Scholar 

  7. M.L. Vaillant, V. Keryvin, T. Rouxel, and Y. Kawamura: Changes in the mechanical properties of a Zr55Cu30Al10Ni5 bulk metallic glass due to heat treatments below 540 °C. Scripta Mater. 47, 19 (2002).

    Article  CAS  Google Scholar 

  8. E. Bakke, R. Busch, and W.L. Johnson: The viscosity of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy in the supercooled liquid. Appl. Phys. Lett. 67, 3260 (1995).

    Article  CAS  Google Scholar 

  9. C.A. Schuh and T.G. Nieh: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).

    Article  CAS  Google Scholar 

  10. W.H. Jiang and M. Atzmon: Rate dependence of serrated flow in a metallic glass. J. Mater. Res. 18, 755 (2003).

    Article  CAS  Google Scholar 

  11. C.A. Schuh, T.G. Nieh, and Y. Kawamura: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002).

    Article  CAS  Google Scholar 

  12. T.G. Nieh, C. Schuh, J. Wadsworth, and Y. Li: Strain rate-dependent deformation in bulk metallic glasses. Intermetallics 10, 1177 (2002).

    Article  CAS  Google Scholar 

  13. C.A. Schuh and T.G. Neih: A survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19, 11 (2004).

    Google Scholar 

  14. R. Vaidyanathan, M. Dao, G. Ravichandran, and S. Suresh: Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49, 3781 (2001).

    Article  CAS  Google Scholar 

  15. M.N.M Patnaik, R. Narasimhan, and U. Ramamurty: Spherical indentation response of metallic glasses. Acta Mater. 52, 3335 (2004).

    Article  CAS  Google Scholar 

  16. J.J. Kim, Y. Choi, S. Suresh, and A.S. Argon: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 (2002).

    CAS  Google Scholar 

  17. H. Zhang, X. Jing, G. Subhash, L.J. Kecskes, and R.J. Dowding: Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation. Acta Mater. 53, 3849 (2005).

    Article  CAS  Google Scholar 

  18. T. Juliano, V. Domnich, T. Buchheit, and Y. Gogotsi: Numerical derivative analysis of load-displacement curves in depth sensing indentation, in Mechanical Properties of Nanostructured Materials and Nanocomposites edited by I. Ovid’ko, C.S. Pande, R. Krishnamoorti, E. Lavernia and G. Skandan (Mater. Res. Soc. Symp. Proc. 791, Warrendale, PA, 2004), pp. Q7.5.1–Q7.5.11.

    Google Scholar 

  19. A. Concustell, J. Sort, A.L. Greer, and M.D. Baro: Anelastic deformation of Pd40Cu30Ni10P20 bulk metallic glass during nanoindentation. Appl. Phys. Lett. 88, 171911 (2006).

    Article  Google Scholar 

  20. M. VanLandingham, T. Juliano, and M. Hagon: Measuring tip shape for instrumented indentation using atomic force microscopy. Meas. Sci. Technol. 16, 2173 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. VanLandingham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krus, T.D., Juliano, T.F., Kecskes, L.J. et al. Initial plasticity onset in Zr- and Hf-rich bulk metallic glasses during instrumented indentation. Journal of Materials Research 22, 1265–1269 (2007). https://doi.org/10.1557/jmr.2007.0185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0185

Navigation