Skip to main content
Log in

X-ray computed micro tomography as complementary method for the characterization of activated porous ceramic preforms

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

X-ray computed micro tomography (CT) is an alternative technique to the classical methods such as mercury intrusion (MIP) and gas pycnometry (HP) to obtain the porosity, pore-size distribution, and density of porous materials. Besides the advantage of being a nondestructive method, it gives not only bulk properties, but also spatially resolved information. In the present work, uniaxially pressed porous alumina performs activated by titanium were analyzed with both the classical techniques and CT. The benefits and disadvantages of the applied measurement techniques were pointed out and discussed. With the generated data, development was proposed for an infiltration model under ideal conditions for the production of metal matrix composites (MMC) by pressureless melt infiltration of porous ceramic preforms. Therefore, the reliability of the results, received from different investigation techniques, was proved statistically and stereologically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Miracle: Metal matrix composites—From science to technological significance. Comp. Sci. Technol. 65, 2526 (2005).

    Article  CAS  Google Scholar 

  2. M.N. Rittner: Metal Matrix Composites in the 21st Century: Markets and Opportunities (GB-108R, BCC, Inc., Brownfield, TX, 2000), p. 184.

    Google Scholar 

  3. A. Evans, C. San Marchi, and A. Mortensen: Metal Matrix Composites in Industry—An Introduction and a Survey (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003), p. 423.

    Book  Google Scholar 

  4. N. Eustathopoulos and A. Mortensen: Capillary phenomena, interfacial bonding and reactivity, in Fundamentals of Metal Matrix Composites edited by S. Suresh, A. Mortensen and A. Needleman (Butterworth-Heinemann, Stoneham, UK, 1993), p. 42.

    Chapter  Google Scholar 

  5. M. Rosso: Ceramic and metal matrix composites: Routes and properties. J. Mater. Proc. Technol. 175, 364 (2006).

    Article  CAS  Google Scholar 

  6. F.L. Matthews and R.D. Rawlings: Composite Materials: Engineering and Science, 4th ed. (Woodhead Publishing, Cambridge, UK, 2003), p. 470.

    Google Scholar 

  7. K. Lemster, U.E. Klotz, S. Fischer, P. Gasser, and J. Kübler: Titanium as an activator material for producing metal matrix composites (MMC) by melt infiltration (Ti-2003, Proc. Conf. Titan. 10, Wiley VCH, Hamburg, Germany, 2003), pp. 2515–2522.

    Google Scholar 

  8. J. Kübler, K. Lemster, P. Gasser, U.E. Klotz, and T. Graule: MMCs by activated melt infiltration: High-melting alloys and oxide ceramics, presented at the 28th International Cocoa Beach Conference and Exposition on Advanced Ceramics & Composites (Cocoa Beach, FL, 2004; unpublished).

    Google Scholar 

  9. K. Lemster, T. Graule, and J. Kübler: Processing and microstructure of metal matrix composites prepared by pressureless Ti-activated infiltration using Fe-base and Ni-base alloys. Mater. Sci. Eng., A 393, 229 (2005).

    Article  CAS  Google Scholar 

  10. N. Eustathopoulos and B. Drevet: Determination of the nature of metal–oxide interfacial interactions from sessile drop data. Mater. Sci. Eng., A 249, 176 (1998).

    Article  Google Scholar 

  11. N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures, Pergamon Material Series, Vol. 3, edited by R.W. Cahn (Pergamon, Oxford, UK, 1999), p. 106.

  12. E. Saiz, R.M. Cannon, and A.P. Tomsia: Reactive spreading: Adsorption, ridging and compound formation. Acta Mater. 48, 4449 (2000).

    Article  CAS  Google Scholar 

  13. C. Wan, P. Kristalis, B. Drevet, and N. Eustathopoulos: Optimization of wettability and adhesion in reactive nickel-based alloys/alumina systems by a thermodynamic approach. Mater. Sci. Eng., A 207, 181 (1996).

    Article  Google Scholar 

  14. M.J. Moura, P.J. Ferreira, and M.M. Figueiro: Mercury intrusion porosimetry in pulp and paper technology. Powder Technol. 160, 61 (2005).

    Article  CAS  Google Scholar 

  15. A. Carlos and Léon y Léon: New perspectives in mercury porosimetry. Adv. Colloid Interface Sci. 76-77, 341 (1998).

    Article  Google Scholar 

  16. L. Palacio, P. Pradanos, and J.I. Calvo: Porosity measurements by a gas penetration method and other techniques applied to membrane characterization. Thin Solid Films 348, 22 (1999).

    Article  CAS  Google Scholar 

  17. V. Karageorgiou and D. Kaplan: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474 (2005).

    Article  CAS  Google Scholar 

  18. R.A. Cook and K.C. Hover: Mercury porosimetry of hardened cement pastes. Cem. Concr. Res. 29, 933 (1999).

    Article  CAS  Google Scholar 

  19. G. de With and H.J. Glass: Reliability and reproducibility of mercury intrusion porosimetry. J. Eur. Ceram. Soc. 17, 753 (1997).

    Article  Google Scholar 

  20. Y.M. Chiang, D.P. Birnie III, and W.D. Kingery: Principles for ceramic science and engineering, in Physical Ceramics, edited by C. Robichaud (John Wiley & Sons, Brisbane, Australia 1997) p. 263.

    Google Scholar 

  21. Y. Wu, G.S.P Castle, and I.I. Inculet: Particle size analysis in the study of induction charging of granular materials. J. Electrost. 63, 189 (2005).

    Article  Google Scholar 

  22. O. Gauthier, R. Mueller, D. von Stechow, B. Lamy, P. Weiss, J.M. Bouler, E. Aguado, and G. Daculsi: In vivo bone regeneration with injectable calcium phosphate biomaterial: A three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials 26, 5444 (2005).

    Article  CAS  Google Scholar 

  23. K. Belaroui, M.N. Pons, and H. Vivier: Morphological characterization of gibbsite and alumina. Powder Technol. 127, 246 (2002).

    Article  CAS  Google Scholar 

  24. R. Xu and O.A. di Guida: Comparison of sizing small particles using different technologies. Powder Technol. 132, 145 (2003).

    Article  CAS  Google Scholar 

  25. M.A. Schiavon, E. Radovanovic, and I.V.P Yoshida: Microstructural characterization of monolithic ceramic-matrix composites from polysiloxane SiC powder. Powder Technol. 123, 232 (2002).

    Article  CAS  Google Scholar 

  26. Z. Ma, H.G. Merkus, J.G.A.E. de Smet, C. Heffels, and B. Scarlett: New developments in particle characterization by laser diffraction: Size and shape. Powder Technol. 111, 66 (2000).

    Article  CAS  Google Scholar 

  27. S. Igarashi, A. Watanabe, and M. Kawamura: Evaluation of capillary pore size characteristics in high-strength concrete at early ages. Cem. Concr. Res. 35, 513 (2005).

    Article  CAS  Google Scholar 

  28. S. Brunauer, Ph. Emmett, and E. Teller: Adsorption of gases in multimolecular layers. J. Am. Ceram. Soc. 60, 309 (1938).

    CAS  Google Scholar 

  29. I. Langmuir: Vapor pressures, evaporation, condensation and adsorption. J. Am. Ceram. Soc. 54, 2798 (1932).

    CAS  Google Scholar 

  30. R. Yang and N.R. Buenfeld: Binary segmentation of aggregate in SEM image analysis of concrete. Cem. Concr. Res. 31, 437 (2001).

    Article  CAS  Google Scholar 

  31. S.T. Ho and W.A. Hutmacher: A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27, 1362 (2006).

    Article  CAS  Google Scholar 

  32. J. Matejicek, B. Kolman, J. Dubsky, K. Neufuss, N. Hopkins, and J. Zwick: Alternative methods for determination of composition and porosity in abradable materials. Mater. Charact. 57, 17 (2006).

    Article  CAS  Google Scholar 

  33. L. Farber, G. Tardos, and J.N. Michaels: Use of x-ray tomography to study the porosity and morphology of granules. Powder Technol. 132, 57 (2003).

    Article  CAS  Google Scholar 

  34. S. Blacher, A. Leonard, B. Heinrichs, N. Tcherkassova, F. Ferauche, M. Crine, P. Marchot, E. Loukine, and J.P. Pirard: Image analysis of x-ray microtomograms of Pd–Ag/SiO2 xerogel catalysts supported on Al2O3 foams. Colloid Surf. A-Physicochem. Eng. Asp. 241, 201 (2004).

    Article  CAS  Google Scholar 

  35. I.G. Watson, M.F. Forster, P.D. Lee, R.J. Dashwood, R.W. Hamilton, and A. Chrazi: Investigation of the clustering behaviour of titanium diboride particles in aluminium. Compos. Pt. A-Appl. Sci. Manuf. Investigation 26, 1177 (2005).

    Article  CAS  Google Scholar 

  36. A. Velhinho, P.D. Sequeira, R. Martins, G. Vignoles, F.B. Fernandes, J.D. Botas, and L.A. Rocha: X-ray tomographic imaging of Al/SiCp functionally graded composites fabricated by centrifugal casting. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact Mater. Atoms 200, 295 (2003).

    Article  CAS  Google Scholar 

  37. A. Borbély, F.F. Csikor, S. Zabler, P. Cloetens, and H. Biermann: Three-dimensional characterization of the microstructure of a metal-matrix composite by holotomography. Mater. Sci. Eng., A 367, 40 (2006).

    Article  CAS  Google Scholar 

  38. R.A. Ketcham and W.D. Carlson: Acquisition, optimization and interpretation of x-ray computed tomographic imaginery: Applications to the geosciences. Comput. Geosci. 27, 381 (2001).

    Article  CAS  Google Scholar 

  39. C.L. Lin and J.D. Miller: Pore structure and network analysis of filter cake. Powder Technol. 154, 61 (2005).

    Article  CAS  Google Scholar 

  40. E. Masad, S. Saadeh, T. Al-Rousan, T.E. Garboczi, and D. Little: Computations of particle surface characteristics using optical and x-ray CT images. Comput. Mater. Sci. 34, 406 (2005).

    Article  CAS  Google Scholar 

  41. E. Maire, A. Fazekas, L. Salvo, R. Dendievel, S. Youssef, P. Cloetens, and J.M. Letang: X-ray tomography applied to the characterization of cellular materials: Related finite element modelling problems. Compos. Sci. Technol. 63, 2431 (2003).

    Article  Google Scholar 

  42. A.A. Proussevitch and D.L. Saghagian: Recognition and separation of dicrete objects within complex 3D voxelized structures. Comput. Geosci. 27, 441 (2001).

    Article  Google Scholar 

  43. M. Coster and J.L. Chermant: Image analysis and mathematical morphology for civil engineering materials. Cem. Concr. Compos. 23, 133 (2001).

    Article  CAS  Google Scholar 

  44. F. Natterer: Numerical methods in tomography. Acta Numerica 8, 107 (1999).

    Article  Google Scholar 

  45. L. Salvo, P. Cloetens, E. Maire, S. Zabler, J.J. Blandin, J.Y. Buffière, W. Ludwig, E. Boller, D. Bellet, and C. Josserond: X-ray micro-tomography an attractive characterization technique in material science. Nucl. Instrum. Methods Phys. Res. Sect. B–Beam Interact. Mater. Atoms 200, 273 (2003).

    Article  CAS  Google Scholar 

  46. E.E. Underwood: Quantitative Stereology (Addison-Wesley, Reading, MA, 1970).

    Google Scholar 

  47. A. Saotome, R. Yoshinaka, M. Osada, and H. Sugiyama: Constituent material properties and clast-size distribution of volcanic breccia. Eng. Geol. 64, 1 (2002).

    Article  Google Scholar 

  48. L.A. Feldkamp, L.C. Davis, and J.W. Kress: Practical cone-beam algorithm. J. Opt. Soc. Am. A 1, 612 (1984).

    Article  Google Scholar 

  49. Y.H. Xu and H.C. Pitot: An improved stereologic method for three-dimensional estimation of particle size distribution from observations in two dimensions and its application. Comp. Meth. 72, 1 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kuebler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasić, S., Grobéty, B., Kuebler, J. et al. X-ray computed micro tomography as complementary method for the characterization of activated porous ceramic preforms. Journal of Materials Research 22, 1414–1424 (2007). https://doi.org/10.1557/jmr.2007.0181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0181

Navigation