Skip to main content
Log in

Stress–strain behaviors of Ti-based bulk metallic glass and their nanostructures

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have investigated the compression stress–strain behaviors of Ti40Zr25Cu12Ni3Be20 bulk metallic glasses prepared by Cu mold casting from various melt temperatures. Plastic strain was found to vary sensitively on the temperature of melts and subsequent annealing conditions. To understand the origin of the plasticity change, the microstructures were characterized using transmission electron microscopy and a laser-assisted three-dimensional atom probe. The fully amorphous sample cast from 1273 K showed 0.6% plastic strain, and it was enhanced to 1.3% after isothermal annealing at 573 K. The sample cast from 1423 K showed 3.0% plastic strain, from which the presence of nanocrystals with a volume fraction of about 12% was confirmed. The sample cast from a higher temperature (1573 K) contained a larger fraction of crystals, which showed limited plastic strain. The effect of the volume fraction of the nanocrystals on the plasticity of bulk metallic glasses is discussed based on the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  2. C.C. Hays, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).

    Article  CAS  Google Scholar 

  3. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 (2001).

    Article  CAS  Google Scholar 

  4. J.Z. Jiang, J. Saida, H. Kato, T. Ohsuna, and A. Inoue: Is Cu60Ti10Zr30 a bulk glass-forming alloy? Appl. Phys. Lett. 82, 4041 (2003).

    Article  CAS  Google Scholar 

  5. A. Inoue, W. Zhang, and J. Saida: Synthesis and fundamental properties of Cu-based bulk glassy alloys in binary and multi-component systems. Mater. Trans. 45, 1153 (2004).

    Article  CAS  Google Scholar 

  6. D. Nagahama, T. Ohkubo, T. Mukai, and K. Hono: Characterization of nanocrystal dispersed Cu60Zr30Ti10 metallic glass. Mater. Trans. 46, 1264 (2005).

    Article  CAS  Google Scholar 

  7. M. Calin, J. Eckert, and L. Schultz: Improved mechanical behavior of Cu–Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scripta Mater. 48, 653 (2003).

    Article  CAS  Google Scholar 

  8. A. Inoue, T. Zhang, J. Saida, M. Matsushita, M.W. Chen, and T. Sakurai: High strength and good ductility of bulk quasicrystalline base alloys in Zr65Al7.5Ni10Cu17.5−xPdx system. Mater. Trans., JIM 40, 1137 (1999).

    Article  CAS  Google Scholar 

  9. J.M. Park, H.J. Chang, K.H. Han, W.T. Kim, and D.H. Kim: Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses. Scripta Mater. 53, 1 (2005).

    Article  CAS  Google Scholar 

  10. A. Leonhard, L.Q. Xing, M. Heilmaier, A. Gebert, J. Eckert, and L. Schultz: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 (1998).

    Article  CAS  Google Scholar 

  11. W.J. Wright, R.B. Schwarz, and W.D. Nix: Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng., A 319–321, 229 (2001).

    Article  Google Scholar 

  12. F. Guo, H.J. Wang, S.J. Poon, and G.J. Shiflet: Ductile titanium-based glassy alloy ingots. Appl. Phys. Lett. 86, 091907 (2005).

    Article  Google Scholar 

  13. D. Blavette, B. Deconihout, A. Bostel, J.M. Sarrau, M. Bouet, and A. Menad: The tomographic atom probe: A quantitative three-dimensional nanoanalytical instrument on an atomic scale. Rev. Sci. Instrum. 64, 2911 (1993).

    Article  CAS  Google Scholar 

  14. J.J. Lewandowski, W.H. Wang, and A.L. Greer: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).

    Article  CAS  Google Scholar 

  15. J. Schroers and W.L. Johnson: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).

    Article  Google Scholar 

  16. R. Zallen: The Physics of Amorphous Solids (John Wiley & Sons, New York, 1983).

    Book  Google Scholar 

  17. J. Basu, N. Nagendra, Y. Li, and U. Ramamurty: Microstructure and mechanical properties of a partially crystallized La-based bulk metallic glass. Philos. Mag. 83, 1747 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ohkubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkubo, T., Nagahama, D., Mukai, T. et al. Stress–strain behaviors of Ti-based bulk metallic glass and their nanostructures. Journal of Materials Research 22, 1406–1413 (2007). https://doi.org/10.1557/jmr.2007.0180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0180

Navigation