Skip to main content
Log in

Highly conductive group VI transition metal dichalcogenide films by solution-processed deposition

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new soluble synthetic route was developed to fabricate thin films of layered structure transition metal dichalcogendies, MoS2 and WS2. High-quality thin films of the dichalcogenides were prepared using new soluble precursors, (CH3NH3)2MS4 (M = Mo, W). The precursors were dissolved in organic solvents and spun onto substrates via both single- and multistep spin coating procedures. The thin films were formed by the thermal decomposition of the coatings under inert atmosphere. Structural, electrical, optical absorption, thermal, and transport properties of the thin films were characterized. Surface morphology of the films was analyzed by atomic force microscopy and scanning electron microscopy. Highly conductive and textured n-type MoS2 films were obtained. The measured room temperature conductivity ≈50 Ω−1 cm−1 is substantially higher than the previously reported values. The n-type WS2 films were prepared for the first time using solution-processed deposition. WS2 displays a conductivity of ≈6.7 Ω−1 cm−1 at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.A. Ridley, B. Nivi, and J.M. Jacobson: All-inorganic field effect transistors fabricated by printing. Science 286, 746 (1999).

    CAS  Google Scholar 

  2. D.B. Mitzi, M. Copel, and S.J. Chey: Low-voltage transistor employing a high-mobility spin-coated chalcogenide semiconductor. Adv. Mater. 17, 1285 (2005).

    Article  CAS  Google Scholar 

  3. C.R. Kagan, D.B. Mitzi, and C.D. Dimitrakopoulos: Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945 (1999).

    Article  CAS  Google Scholar 

  4. D.B. Mitzi, L.L. Kosbar, C.E. Murray, M. Copel, and A. Afzall: High-mobility ultrathin semiconducting films prepared by spin coating. Nature 428, 299 (2004).

    Article  CAS  Google Scholar 

  5. L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S.R. Cohen, and R. Tenne: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791 (1997).

    Article  CAS  Google Scholar 

  6. B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, and J.K. Nørskov: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308 (2005).

    Article  CAS  Google Scholar 

  7. R.A. Simon, A.J. Ricco, J. Harrison, and M.S. Wrighton: Improvement of the photoelectrochemical oxidation of halides by platinization of metal dichalcogenide photoanodes. J. Phys. Chem. 87, 4446 (1983).

    Article  CAS  Google Scholar 

  8. J. Chen, S.L. Li, F. Gao, and Z.L. Tao: Synthesis and characterization of WS2 nanotubes. Chem. Mater. 15, 1012 (2003).

    Article  CAS  Google Scholar 

  9. P. Afanasiev and I. Bezverkhy: Synthesis of MoSx (5 < x < 6) amorphous sulfides and their use for preparation of MoS2 monodispersed microspheres. Chem. Mater. 14, 2826 (2002).

    Article  CAS  Google Scholar 

  10. C.M. Zelenski and P.K. Dorhout: Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2. J. Am. Chem. Soc. 120, 734 (1998).

    Article  CAS  Google Scholar 

  11. A. Jäger-Waldau, M.Ch. Lux-Steiner, G. Jäger-Waldau, and E. Bucher: WS2 thin films prepared by sulphurization. Appl. Surf. Sci. 71, 731 (1993).

    Article  Google Scholar 

  12. J. Jebarj Devadasan, C. Sanjeeviraja, and M. Jayachandran: Electrodeposition ofp -WS2 thin film and characterization. J. Cryst. Growth 226, 67 (2001).

    Article  CAS  Google Scholar 

  13. C. Ballif, M. Regula, F. Lévy, F. Burmeister, C. Schäfle, T. Matthes, P. Leiderer, P. Niedermann, W. Gutmannsbauer, and R. Bucher: Submicron contacts for electrical characterization of semiconducting WS2 thin films. J. Vac. Sci. Technol., A 16, 1239 (1998).

    Article  CAS  Google Scholar 

  14. S.J. Li, J.C. Bernède, J. Pouzet, and M. Jamali: WS2 thin films prepared by solid state reaction (induced by annealing) between the constituents in thin film form. J. Phys. Condens. Matter 8, 2291 (1996).

    Article  CAS  Google Scholar 

  15. K.C. Mandal and A. Mondal: Chemically deposited semiconducting molybdenum sulfide thin films. J. Solid State Chem. 85, 176 (1990).

    Article  CAS  Google Scholar 

  16. D. Tonti, F. Varsano, F. Decker, C. Ballif, M. Regula, and M. Remškar: Preparation and photoelectrochemistry of semiconducting WS2 thin films. J. Phys. Chem. B 101, 2485 (1997).

    Article  CAS  Google Scholar 

  17. J. Pütz and M.A. Aegerter: Spin deposition of MoSx thin films. Thin Solid Films 351, 119 (1999).

    Article  Google Scholar 

  18. W.M. Wendlandt and H.G. Hecht: Reflectance Spectroscopy (Wiley Interscience, New York, 1966).

    Google Scholar 

  19. ICDD Card Nos. 37-1492 and 08-0237 International Center for Diffraction Data: Newton Square, PA, 1996.

  20. E. Bucher and A. Aruchamy, Photoelectrochemistry and Photovoltaics of Layered Semiconductors (Kluwer Academic Publishers, Dordrecht, NL, 1992), p. 36.

    Google Scholar 

  21. J.C. Bernède, J. Pouzet, E. Gourmelon, and H. Hadouda: Recent studies on photoconductive thin films of binary compounds. Synth. Met. 99, 45 (1999).

    Article  Google Scholar 

  22. J. Cheon, J.E. Gozum, and G.S. Girolami: Chemical vapor deposition of MoS2 and TiS2 films from the metal-organic precursors Mo(S-t-Bu)4 and Ti(S-t-Bu)4. Chem. Mater. 9, 1847 (1997).

    Article  CAS  Google Scholar 

  23. N. Barreau and J.C. Bernède: MoS2 textured films grown on glass substrates through sodium sulfide based compounds. J. Phys. D Appl. Phys. 35, 1197 (2002).

    Article  CAS  Google Scholar 

  24. J.A. Wilson and A.D. Yoffe: The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193 (1969).

    Article  CAS  Google Scholar 

  25. G. Alonso, V. Petranovskii, M. Del Valle, J. Cruz-Reyes, A. Licea-Claverie, and S. Fuentes: Preparation of WS2 catalysts by in situ decomposition of tetraalkylammonium thiotungstates. Appl. Catal. G E N 197, 87 (2000).

    Article  CAS  Google Scholar 

  26. S.M. Sze: Semiconductor Devices: Physics and Technology2nd ed. (John Wiley & Sons, New York, 1985).

    Google Scholar 

  27. D. Mergel and Z. Qiao: Correlation of lattice distortion with optical and electrical properties of In2O3:Sn films. J. Appl. Phys. 95, 5608 (2004).

    Article  CAS  Google Scholar 

  28. J. Ouerfelli, J.C. Bernède, A. Khelil, and J. Pouzet: Photoconductive WS2 thin films obtained from multilayer Ni/W/S … W/S structure. Appl. Surf. Sci. 120, 1 (1997).

    Article  CAS  Google Scholar 

  29. R.I. Walton and S.J. Hibble: A combined in situ x-ray absorption spectroscopy and x-ray diffraction study of the thermal decomposition of ammonium tetrathiotungstate. J. Mater. Chem. 9, 1347 (1999).

    Article  CAS  Google Scholar 

  30. K. Ellmer, C. Stock, K. Diesner, and I. Sieber: Deposition of c¬-oriented tungsten disulfide (WS2) films by reactive DC magnetron sputtering from a W-target in Ar/H2S. J. Cryst. Growth 182, 389 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ki, W., Huang, X., Li, J. et al. Highly conductive group VI transition metal dichalcogenide films by solution-processed deposition. Journal of Materials Research 22, 1390–1395 (2007). https://doi.org/10.1557/jmr.2007.0179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0179

Navigation