Skip to main content
Log in

An extended criterion for estimation of glass-forming ability of metals

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2007

This article has been updated

Abstract

If a metal contracts upon solidification, the specific volume of a metallic liquid phase must not be smaller than that of the corresponding crystal. As molten metals have higher thermal expansion coefficients compared with those of the corresponding crystals, the intersection point of two specific-volume–temperature plots of the liquid and the corresponding solid crystalline phase by analogy with Kauzmann’s paradox for entropy could be treated as an ideal glass-transition temperature. This paper describes this phenomenon observed for a number of pure metals and gives a semiempirical criterion for the achievement of a good glass-forming ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. P.G. Debenedetti and F.H. Stillinger: Supercooled liquids and the glass transition. Nature 410, 259 (2001).

    Article  CAS  Google Scholar 

  2. D. Turnbull: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).

    Article  CAS  Google Scholar 

  3. A. Van den Beukel and J. Sietsma: The glass transition as a free volume related kinetic phenomenon. Acta Metall. Mater. 38, 383 (1990).

    Article  Google Scholar 

  4. D. Turnbull and M.H. Cohen: On the free-volume model of the liquid–glass transition. J. Chem. Phys. 52, 3038 (1970).

    Article  Google Scholar 

  5. T.G. Fox and P.J. Flory: Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 21, 581 (1950).

    Article  CAS  Google Scholar 

  6. M.H. Cohen and D. Turnbull: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164 (1959).

    Article  CAS  Google Scholar 

  7. M.H. Cohen and G.S. Grest: Liquid-glass transition, a free-volume approach. Phys. Rev. 20, 1077 (1979).

    Article  CAS  Google Scholar 

  8. R. Brüning and K. Samwer: Glass transition on long time scales. Phys. Rev. B 46, 11318 (1992).

    Article  Google Scholar 

  9. W. Kauzmann: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219 (1948).

    Article  CAS  Google Scholar 

  10. A.R. Yavari: Small volume change on melting as a new criterion for easy formation of metallic glasses. Phys. Lett. A. 95, 165 (1983).

    Article  Google Scholar 

  11. W.F. Gale and T.C. Totemeier: Smithells Metals Reference Book, 8th edition, (Elsevier Butterworth-Heinemann Ltd., Oxford UK, 2004), p. 14–1.

    Google Scholar 

  12. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and P.D. Desai: Thermophysical properties of matter, in Thermal Expansion, Metallic Elements and Alloys, Vol. 12, (IFI/Plenum, New York, NY and Washington, DC, 1975), pp. 1–100.

    Google Scholar 

  13. V.G. Bar’yakhtar, L.E. Mikhalova, A.G. Il’inski, A.V. Romanova, and T.M. Khristenko: Thermal expansion mechanism of liquid metals. Sov. Phys. JETP 68, 811 (1989).

    Google Scholar 

  14. W.F. Gale and T.C. Totemeier: Smithells Metals Reference Book, 8th edition, (Elsevier Butterworth-Heinemann Ltd., Oxford UK, 2004), pp. 14–10.

    Google Scholar 

  15. W. Coy and R. Mateer: Density of molten aluminum by maximum bubble pressure method. Trans. ASM 58, 99 (1965).

    CAS  Google Scholar 

  16. S. Saito, Y. Shiraishi, and Y. Sakuma: Density measurement of molten metals by levitation technique at temperatures between 1800° and 2200 °C. Trans. Iron Steel Inst. Jpn. 9, 118 (1969).

    Article  CAS  Google Scholar 

  17. S. Watanabe: Densities and viscosities of iron, cobalt and Fe–Co alloy in liquid state. Trans. Jpn. Inst. Metals 12, 17 (1971).

    Article  Google Scholar 

  18. J. Brillo and I. Egry: Density determination of liquid copper, nickel, and their alloys. Int. J. Thermophys. 24, 1155 (2003).

    Article  CAS  Google Scholar 

  19. D.J. Steinberg: A simple relationship between the temperature dependence of the density of liquid metals and their boiling temperatures. Metall. Trans. 5, 1341 (1974).

    Article  CAS  Google Scholar 

  20. D.V. Louzguine, A.R. Yavari, K. Ota, G. Vaughan, and A. Inoue: Synchrotron x-ray radiation diffraction studies of thermal expansion, free volume change and glass transition phenomenon in Cu-based glassy and nanocomposite alloys on heating. J. Non-Cryst. Solids 351, 1639 (2005).

    Article  CAS  Google Scholar 

  21. A.L. Greer: Thermodynamics of undercooled liquids. J. Less Common Met. 145, 131 (1988).

    Article  CAS  Google Scholar 

  22. A. Inoue, T. Negishi, H.M. Kimura, T. Zhang, and A.R. Yavari: High packing density of Zr- and Pd-based bulk amorphous. Alloys Mater. Trans., JIM 39, 318 (1998).

    Article  CAS  Google Scholar 

  23. L. Battezzati and M. Baricco: Analysis of volume effects in metallic glass formation. J. Less Common Met. 145, 31 (1988).

    Article  CAS  Google Scholar 

  24. H.S. Chen: Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metall. 22, 1505 (1974).

    Article  CAS  Google Scholar 

  25. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  26. D.V. Louzguine-Luzgin, A.D. Setyawan, H. Kato, and A. Inoue: Influence of thermal conductivity on the glass-forming ability of Ni-based and Cu-based alloys. Appl. Phys. Lett. 88, 251902 (2006).

    Article  Google Scholar 

  27. J.H. Perepezko and R.J. Hebert: Amorphous aluminum alloys—Synthesis and stability. J. Metall. 54, 34 (2002).

    CAS  Google Scholar 

  28. A. Inoue: High-strength bulk amorphous-alloys with low critical cooling rates. Mater. Trans., JIM 36, 866 (1995).

    Article  CAS  Google Scholar 

  29. V.A. Shneidman and D.R. Uhlmann: The fast cooling/heating rate effects in devitrification of glasses. II. Crystallization kinetics. J. Chem. Phys. 109, 186 (1998).

    Article  CAS  Google Scholar 

  30. W. Klement, R.H. Willens, and P. Duwez: Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869 (1960).

    Article  CAS  Google Scholar 

  31. D. Turnbull and M.H. Cohen: Free-volume model of the amorphous phase: Glass transition. J. Chem. Phys. 34, 120 (1961).

    Article  CAS  Google Scholar 

  32. D.V. Louzguine-Luzgin and A. Inoue: Nano-devitrification of glassy alloys. J. Nanosci. Nanotechnol. 5, 999 (2005).

    Article  CAS  Google Scholar 

  33. Z.P. Lu and C.T. Liu: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).

    Article  CAS  Google Scholar 

  34. A.L. Greer: Metallic glasses. Science 267, 1947 (1995).

    Article  CAS  Google Scholar 

  35. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).

    Article  CAS  Google Scholar 

  36. T. Ichitsubo, E. Matsubara, H. Numakura, K. Tanaka, N. Nishiyama, and R. Tarumi: Glass-liquid transition in a less-stable metallic glass. Phys. Rev. B 72, 052201 (2005).

    Article  Google Scholar 

  37. C.A. Angell: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri V. Louzguine-Luzgin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louzguine-Luzgin, D.V., Inoue, A. An extended criterion for estimation of glass-forming ability of metals. Journal of Materials Research 22, 1378–1383 (2007). https://doi.org/10.1557/jmr.2007.0167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0167

Navigation