Skip to main content
Log in

Fabrication of mesoporous bulk composed of titanate nanotubes by hydrothermal hot-pressing technique

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, bulky titanate nanotubes with dense microstructures were successfully fabricated by a hydrothermal hot-pressing (HHP) technique with water as a reactive solvent. Titanate-based nanotubes of about 10 nm outer diameter and 5 nm inner diameter and a few hundred nanometers in length were synthesized by a hydrothermal treatment of anatase-type TiO2 powder in a 10 M NaOH aqueous solution. From results of N2-adsorption and transmission electron microscopy observation, it was obvious that HHP processed samples were composed of nanotubular structures and that the obtained bulks possessed mesopores and high Brunauer–Emmett–Teller surface area. These results suggested that the obtained bulks possessed functionality as good as that of powders of titanate nanotubes. Thus, the HHP technique may be a useful method for fabricating bulky titanate nanotubes and may be applied in the solidification of the other some nanotubular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).

    Article  CAS  Google Scholar 

  2. Q. Chen, G.H. Du, S. Zhang, and L.M. Peng: The structure of trititanate nanotubes. Acta Crystallogr., Sect. B 58, 587 (2002).

    Article  CAS  Google Scholar 

  3. A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio, and H. Aritani: Synthesis of nanotube from a layered H2Ti4O9·H2O in a hydrothermal treatment using various titania sources. J. Mater. Sci. 39, 4239 (2004).

    Article  CAS  Google Scholar 

  4. M. Zhang, Z.S. Jin, J.J. Yung, and Z.J. Zhang: Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2.J. Molec. Catal. A: Chem. 217, 203 (2002).

    Article  Google Scholar 

  5. H. Tokudome and M. Miyauchi: N-doped TiO2 nanotube with visible light activity. Chem. Lett. Jpn. 33, 1108 (2004).

    Article  CAS  Google Scholar 

  6. A. Nakahira, T. Kubo, Y. Yamasaki, T. Suzuki, and Y. Ikuhara: Synthesis of Pt-entrapped titanate nanotubes. Jpn. J. Appl. Phys. 44, 690 (2005).

    Article  Google Scholar 

  7. X. Sun and Y. Li: Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. Eur. J. 9, 2229 (2003).

    Article  CAS  Google Scholar 

  8. Z.R. Tian, J.A. Voigt, J. Lin, B. Mckenzie, and H. Xu: Large oriented arrays and continuous films of TiO2-based nanotubes. J. Am. Chem. Soc. 12, 12384 (2003).

    Article  Google Scholar 

  9. H. Tokudome and M. Miyauchi: Titanate nanotube thin films via alternate layer deposition. Chem. Commun. 8, 958 (2004).

    Article  Google Scholar 

  10. K. Yanagisawa, K. Ioku, and N. Yamasaki: Pore size control of porous ssilica ceramics by hydrothermal hot-pressing. J. Ceram. Soc. Jpn. 102, 966 1994, in Japanese.

    Article  CAS  Google Scholar 

  11. K. Yanagisawa, K. Ioku, and N. Yamasaki: Formation of anatase porous ceramics by hydrothermal hot-pressing of amorphous titania spheres. J. Am. Ceram. Soc. 80, 1303 (1997).

    Article  CAS  Google Scholar 

  12. K. Hosoi, T. Hashida, H. Takahashi, N. Yamasaki, and T. Korenage: New processing technique for hydroxyapatite ceramics by the hydrothermal hot-pressing method. J. Am. Ceram. Soc. 79, 2771 (1996).

    Article  CAS  Google Scholar 

  13. A. Nakahira, T. Murakami, T. Onoki, T. Hashida, and K. Hosoi: Fabrication of porous hydroxyapatite using hydrothermal hot pressing and post-sintering. J. Am. Ceram. Soc. 88, 1334 (2005).

    Article  CAS  Google Scholar 

  14. A. Nakahira, S. Takezoe, and Y. Yamasaki: Synthesis of dense Y-zeolite bulks with large surface area using a hydrothermal hot-pressing process. Chem. Lett. Jpn. 33, 1400 (2004).

    Article  CAS  Google Scholar 

  15. M. Takimura, H. Nagata, Y. Yamasaki, T. Suzuki, Y. Ikuhara, and A. Nakahira: Synthesis and characterization of bulky FSM with interconnected mesopore-networks using an HHP method. J. Ceram. Soc. Jpn. 114, 554 (2006).

    Article  CAS  Google Scholar 

  16. R. Yoshida, Y. Suzuki, and Y. Susumu: Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes. Mater. Chem. Phys. 91, 409 (2005).

    Article  CAS  Google Scholar 

  17. B. Poudel, W.Z. Wang, C. Dames, J.Y. Huang, S. Kunwar, D.Z. Wang, D. Banerjee, G. Chen, and Z.F. Ren: Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnol. 16, 1935 (2005).

    Article  CAS  Google Scholar 

  18. T. Kubo, Y. Yamasaki, and A. Nakahira (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubo, T., Nakahira, A. & Yamasaki, Y. Fabrication of mesoporous bulk composed of titanate nanotubes by hydrothermal hot-pressing technique. Journal of Materials Research 22, 1286–1291 (2007). https://doi.org/10.1557/jmr.2007.0160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0160

Navigation